trainPred 的长度在 R 的预测函数中不正确
The length of trainPred is not correct in prediction function with R
这是我的部分朴素贝叶斯 a
trainPred<- predict(NBclassfier, newdata = train, type = "raw")
但是我得到的 trainPred 长度的数字是错误的,它比 trainPre 的实际大小大两倍。
即使我正在使用
trainPred<- predict(NBclassfier, newdata = train, type = "class")
对于 trainPred 的长度,我只得到 0
所以当我运行下面的代码出现错误时
trainTable <- table(train$prog, trainPred)
NBclassifer 的代码是 NBclassfier = naiveBayes(prog~., data= train)
整个代码有一个错误
library(caret)
library(e1071)
set.seed(25)
trainIndex=createDataPartition(NaiveData$prog, p=0.8)$Resample1
train=NaiveData[trainIndex, ]
test=NaiveData[-trainIndex, ]
check the balance
print(table(NaiveData$prog))
0 1
496 261
Check the train table
print(table(train$prog))
0 1
388 218
NBclassfier = naiveBayes(prog~., data= train)
trainPred <- predict(NBclassfier, newdata = train, type = "raw")
trainPred<- trainPred
trainTable <- table(train$prog, trainPred)
Error in table(train$prog, trainPred) : all arguments must have the same length
我刚刚解决了这个问题,也想分享答案,
NBclassfier = naiveBayes(as.factor(prog)~., data= train)
confusionMatrix(as.factor(trainPred), as.factor(train$prog), mode = "prec_recall")
让他们成为因素。
这是我的部分朴素贝叶斯 a
trainPred<- predict(NBclassfier, newdata = train, type = "raw")
但是我得到的 trainPred 长度的数字是错误的,它比 trainPre 的实际大小大两倍。
即使我正在使用
trainPred<- predict(NBclassfier, newdata = train, type = "class")
对于 trainPred 的长度,我只得到 0
所以当我运行下面的代码出现错误时
trainTable <- table(train$prog, trainPred)
NBclassifer 的代码是 NBclassfier = naiveBayes(prog~., data= train)
整个代码有一个错误
library(caret)
library(e1071)
set.seed(25)
trainIndex=createDataPartition(NaiveData$prog, p=0.8)$Resample1
train=NaiveData[trainIndex, ]
test=NaiveData[-trainIndex, ]
check the balance
print(table(NaiveData$prog))
0 1
496 261
Check the train table
print(table(train$prog))
0 1
388 218
NBclassfier = naiveBayes(prog~., data= train)
trainPred <- predict(NBclassfier, newdata = train, type = "raw")
trainPred<- trainPred
trainTable <- table(train$prog, trainPred)
Error in table(train$prog, trainPred) : all arguments must have the same length
我刚刚解决了这个问题,也想分享答案,
NBclassfier = naiveBayes(as.factor(prog)~., data= train)
confusionMatrix(as.factor(trainPred), as.factor(train$prog), mode = "prec_recall")
让他们成为因素。