为什么并行 for of openmp 不适用于矢量化颜色 space 转换?
Why parallel for of openmp does not work for vectorized color space conversion?
我已经矢量化了颜色 space 转换算法(RGB 到 YCbCr)。当我不使用线程 (#pragma omp parallel for
) 时,一切似乎都很好。但是,当我尝试使用线程时,它无法提高我代码的矢量化版本的性能(它也会降低)。
Threads 加速了标量代码、自动矢量化代码和 OpenMP SIMDized 代码 (#pragma omp parallel for simd
)
我不知道发生了什么,需要你的帮助。
提前致谢
我使用的是 fedora 31,Intel corei7 6700HQ,12GB RAM,ICC 19.0.3 (-Ofast [-no-vec]
-qopenmp -xHOST
代码如下:
标量:
//Scalar for basline
#include <stdio.h>
#define MAX1 512
#define MAX2 MAX1
float __attribute__(( aligned(32))) image_r[MAX1][MAX2], image_g[MAX1][MAX2], image_b[MAX1][MAX2], image_y[MAX1][MAX2], image_cb[MAX1][MAX2], image_cr[MAX1][MAX2];
float coeff_RTY[3][3] = {{0.299, 0.587, 0.114},{-0.169, -0.331, 0.500},{0.500, -0.419, -0.081}};
inline void fill_float(float a[MAX1][MAX1])
{
int i,j;
for(i=0; i<MAX1; i++){
for(j=0; j<MAX2; j++){
a[i][j] = (i+j+100)%256;
}
}
}
int main()
{
fill_float(image_r);
fill_float(image_g);
fill_float(image_b);
int i, j;
long t1,t2,min=100000000000000;
do{
t1=_rdtsc();
//#pragma omp parallel for
for( i=0; i<MAX1; i++){
for( j=0; j<MAX2; j++){
image_y[i][j] = coeff_RTY[0][0]*image_r[i][j] + coeff_RTY[0][1]*image_g[i][j] + coeff_RTY[0][2]*image_b[i][j];
image_cb[i][j] = coeff_RTY[1][0]*image_r[i][j] + coeff_RTY[1][1]*image_g[i][j] + coeff_RTY[1][2]*image_b[i][j] + 128;
image_cr[i][j] = coeff_RTY[2][0]*image_r[i][j] + coeff_RTY[2][1]*image_g[i][j] + coeff_RTY[2][2]*image_b[i][j] + 128;
}
}
t2=_rdtsc();
if((t2-t1)<min){
min=t2-t1;
printf("\n%li", t2-t1);
}
}while(1);
printf("%f", image_y[MAX1/2][MAX2/2]);
printf("%f", image_cb[MAX1/2][MAX2/2]);
printf("%f", image_cr[MAX1/2][MAX2/2]);
return 0;
}
以及使用 AVX(浮点)的向量化版本:
//AVX
#include <stdio.h>
#include <x86intrin.h>
#define MAX1 512
#define MAX2 MAX1
float __attribute__(( aligned(32))) image_r[MAX1][MAX2], image_g[MAX1][MAX2], image_b[MAX1][MAX2], image_y[MAX1][MAX2], image_cb[MAX1][MAX2], image_cr[MAX1][MAX2];
float coeff_RTY[3][3] = {{0.299, 0.587, 0.114},{-0.169, -0.331, 0.500},{0.500, -0.419, -0.081}};
inline void fill_float(float a[MAX1][MAX1])
{
int i,j;
for(i=0; i<MAX1; i++){
for(j=0; j<MAX2; j++){
a[i][j] = (i+j+100)%256;
}
}
}
int main()
{
//program variables:
//calculate filter coeff or use an existing one
__m256 vec_c[3][3], vec_128;
__m256 vec_r, vec_g, vec_b, vec_y, vec_cb, vec_cr;
__m256 vec_t[3][3], vec_sum;
vec_c[0][0] = _mm256_set1_ps(coeff_RTY[0][0]);
vec_c[0][1] = _mm256_set1_ps(coeff_RTY[0][1]);
vec_c[0][2] = _mm256_set1_ps(coeff_RTY[0][2]);
vec_c[1][0] = _mm256_set1_ps(coeff_RTY[1][0]);
vec_c[1][1] = _mm256_set1_ps(coeff_RTY[1][1]);
vec_c[1][2] = _mm256_set1_ps(coeff_RTY[1][2]);
vec_c[2][0] = _mm256_set1_ps(coeff_RTY[2][0]);
vec_c[2][1] = _mm256_set1_ps(coeff_RTY[2][1]);
vec_c[2][2] = _mm256_set1_ps(coeff_RTY[2][2]);
vec_128 = _mm256_set1_ps(128);
//iorder to avoid optimization for zero values
fill_float(image_r);
fill_float(image_g);
fill_float(image_b);
int i, j=0;
long t1,t2,min=100000000000000;
do{
t1=_rdtsc();
//#pragma omp parallel for
for( i=0; i<MAX1; i++){
for( j=0; j<MAX2; j+=8){
//_mm_prefetch(&image_r[i][j+8],_MM_HINT_T0);
//_mm_prefetch(&image_g[i][j+8],_MM_HINT_T0);
//_mm_prefetch(&image_b[i][j+8],_MM_HINT_T0);
vec_r = _mm256_load_ps(&image_r[i][j]);
vec_g = _mm256_load_ps(&image_g[i][j]);
vec_b = _mm256_load_ps(&image_b[i][j]);
vec_t[0][0] = _mm256_mul_ps(vec_r, vec_c[0][0]);
vec_t[0][1] = _mm256_mul_ps(vec_g, vec_c[0][1]);
vec_t[0][2] = _mm256_mul_ps(vec_b, vec_c[0][2]);
vec_t[1][0] = _mm256_mul_ps(vec_r, vec_c[1][0]);
vec_t[1][1] = _mm256_mul_ps(vec_g, vec_c[1][1]);
vec_t[1][2] = _mm256_mul_ps(vec_b, vec_c[1][2]);
vec_t[2][0] = _mm256_mul_ps(vec_r, vec_c[2][0]);
vec_t[2][1] = _mm256_mul_ps(vec_g, vec_c[2][1]);
vec_t[2][2] = _mm256_mul_ps(vec_b, vec_c[2][2]);
//vec_y = vec_t[0][0] + vec_t[0][1] + vec_t[0][2]
vec_sum = _mm256_add_ps(vec_t[0][0], vec_t[0][1]);
vec_y = _mm256_add_ps(vec_t[0][2], vec_sum);
//vec_cb = vec_t[1][0] + vec_t[1][1] + vec_t[1][2] +128
vec_sum = _mm256_add_ps(vec_t[1][0], vec_t[1][1]);
vec_sum = _mm256_add_ps(vec_t[1][2], vec_sum);
vec_cb = _mm256_add_ps(vec_128, vec_sum);
//vec_cr = vec_t[2][0] + vec_t[2][1] + vec_t[2][2] +128
vec_sum = _mm256_add_ps(vec_t[2][0], vec_t[2][1]);
vec_sum = _mm256_add_ps(vec_t[2][2], vec_sum);
vec_cr = _mm256_add_ps(vec_128, vec_sum);
_mm256_stream_ps(&image_y[i][j], vec_y);
_mm256_stream_ps(&image_cb[i][j], vec_cb);
_mm256_stream_ps(&image_cr[i][j], vec_cr);
}
}
t2=_rdtsc();
if((t2-t1)<min){
min=t2-t1;
printf("\n%li", t2-t1);
}
}while(1);
//inorder to avoid optimization for non used values
printf("%f", image_y[MAX1/2][MAX2/2]);
printf("%f", image_cb[MAX1/2][MAX2/2]);
printf("%f", image_cr[MAX1/2][MAX2/2]);
return 0;
}
更新:
128x128 图像尺寸的最佳记录周期如下:
单核:
Scalar code: 88k
Auto-vectorized: 59k
Vectorized using intrinsics: **21k**
vectorized by #pragma omp simd: 59k
多核:
Scalar code: 25k
Auto-vectorized: 13k
Vectorized using intrinsics: **226k**
vectorized by #pragma omp .. simd: 22k
对于1024x1024的图片尺寸如下:
单核:
Scalar code: 7M
Auto-vectorized: 3M
Vectorized using intrinsics: **3M**
vectorized by #pragma omp simd: 3M
多核:
Scalar code: 6M
Auto-vectorized: 6M
Vectorized using intrinsics: **15M**
vectorized by #pragma omp parallel for simd: 8M
在尝试了不同的想法后,通过在 #pragma omp parallel for
之前添加以下 OpenMP 语句行解决了问题
omp_set_dynamic(3);
因此结果是:
Vectorized using intrinsics and
Multi-core:
MAX1=128 --> 28k
MAX1=1024 --> 3M
这些结果不再奇怪了。
任何新结果都将在以后的更新中添加到此答案中。
我已经矢量化了颜色 space 转换算法(RGB 到 YCbCr)。当我不使用线程 (#pragma omp parallel for
) 时,一切似乎都很好。但是,当我尝试使用线程时,它无法提高我代码的矢量化版本的性能(它也会降低)。
Threads 加速了标量代码、自动矢量化代码和 OpenMP SIMDized 代码 (#pragma omp parallel for simd
)
我不知道发生了什么,需要你的帮助。
提前致谢
我使用的是 fedora 31,Intel corei7 6700HQ,12GB RAM,ICC 19.0.3 (-Ofast [-no-vec]
-qopenmp -xHOST
代码如下:
标量:
//Scalar for basline
#include <stdio.h>
#define MAX1 512
#define MAX2 MAX1
float __attribute__(( aligned(32))) image_r[MAX1][MAX2], image_g[MAX1][MAX2], image_b[MAX1][MAX2], image_y[MAX1][MAX2], image_cb[MAX1][MAX2], image_cr[MAX1][MAX2];
float coeff_RTY[3][3] = {{0.299, 0.587, 0.114},{-0.169, -0.331, 0.500},{0.500, -0.419, -0.081}};
inline void fill_float(float a[MAX1][MAX1])
{
int i,j;
for(i=0; i<MAX1; i++){
for(j=0; j<MAX2; j++){
a[i][j] = (i+j+100)%256;
}
}
}
int main()
{
fill_float(image_r);
fill_float(image_g);
fill_float(image_b);
int i, j;
long t1,t2,min=100000000000000;
do{
t1=_rdtsc();
//#pragma omp parallel for
for( i=0; i<MAX1; i++){
for( j=0; j<MAX2; j++){
image_y[i][j] = coeff_RTY[0][0]*image_r[i][j] + coeff_RTY[0][1]*image_g[i][j] + coeff_RTY[0][2]*image_b[i][j];
image_cb[i][j] = coeff_RTY[1][0]*image_r[i][j] + coeff_RTY[1][1]*image_g[i][j] + coeff_RTY[1][2]*image_b[i][j] + 128;
image_cr[i][j] = coeff_RTY[2][0]*image_r[i][j] + coeff_RTY[2][1]*image_g[i][j] + coeff_RTY[2][2]*image_b[i][j] + 128;
}
}
t2=_rdtsc();
if((t2-t1)<min){
min=t2-t1;
printf("\n%li", t2-t1);
}
}while(1);
printf("%f", image_y[MAX1/2][MAX2/2]);
printf("%f", image_cb[MAX1/2][MAX2/2]);
printf("%f", image_cr[MAX1/2][MAX2/2]);
return 0;
}
以及使用 AVX(浮点)的向量化版本:
//AVX
#include <stdio.h>
#include <x86intrin.h>
#define MAX1 512
#define MAX2 MAX1
float __attribute__(( aligned(32))) image_r[MAX1][MAX2], image_g[MAX1][MAX2], image_b[MAX1][MAX2], image_y[MAX1][MAX2], image_cb[MAX1][MAX2], image_cr[MAX1][MAX2];
float coeff_RTY[3][3] = {{0.299, 0.587, 0.114},{-0.169, -0.331, 0.500},{0.500, -0.419, -0.081}};
inline void fill_float(float a[MAX1][MAX1])
{
int i,j;
for(i=0; i<MAX1; i++){
for(j=0; j<MAX2; j++){
a[i][j] = (i+j+100)%256;
}
}
}
int main()
{
//program variables:
//calculate filter coeff or use an existing one
__m256 vec_c[3][3], vec_128;
__m256 vec_r, vec_g, vec_b, vec_y, vec_cb, vec_cr;
__m256 vec_t[3][3], vec_sum;
vec_c[0][0] = _mm256_set1_ps(coeff_RTY[0][0]);
vec_c[0][1] = _mm256_set1_ps(coeff_RTY[0][1]);
vec_c[0][2] = _mm256_set1_ps(coeff_RTY[0][2]);
vec_c[1][0] = _mm256_set1_ps(coeff_RTY[1][0]);
vec_c[1][1] = _mm256_set1_ps(coeff_RTY[1][1]);
vec_c[1][2] = _mm256_set1_ps(coeff_RTY[1][2]);
vec_c[2][0] = _mm256_set1_ps(coeff_RTY[2][0]);
vec_c[2][1] = _mm256_set1_ps(coeff_RTY[2][1]);
vec_c[2][2] = _mm256_set1_ps(coeff_RTY[2][2]);
vec_128 = _mm256_set1_ps(128);
//iorder to avoid optimization for zero values
fill_float(image_r);
fill_float(image_g);
fill_float(image_b);
int i, j=0;
long t1,t2,min=100000000000000;
do{
t1=_rdtsc();
//#pragma omp parallel for
for( i=0; i<MAX1; i++){
for( j=0; j<MAX2; j+=8){
//_mm_prefetch(&image_r[i][j+8],_MM_HINT_T0);
//_mm_prefetch(&image_g[i][j+8],_MM_HINT_T0);
//_mm_prefetch(&image_b[i][j+8],_MM_HINT_T0);
vec_r = _mm256_load_ps(&image_r[i][j]);
vec_g = _mm256_load_ps(&image_g[i][j]);
vec_b = _mm256_load_ps(&image_b[i][j]);
vec_t[0][0] = _mm256_mul_ps(vec_r, vec_c[0][0]);
vec_t[0][1] = _mm256_mul_ps(vec_g, vec_c[0][1]);
vec_t[0][2] = _mm256_mul_ps(vec_b, vec_c[0][2]);
vec_t[1][0] = _mm256_mul_ps(vec_r, vec_c[1][0]);
vec_t[1][1] = _mm256_mul_ps(vec_g, vec_c[1][1]);
vec_t[1][2] = _mm256_mul_ps(vec_b, vec_c[1][2]);
vec_t[2][0] = _mm256_mul_ps(vec_r, vec_c[2][0]);
vec_t[2][1] = _mm256_mul_ps(vec_g, vec_c[2][1]);
vec_t[2][2] = _mm256_mul_ps(vec_b, vec_c[2][2]);
//vec_y = vec_t[0][0] + vec_t[0][1] + vec_t[0][2]
vec_sum = _mm256_add_ps(vec_t[0][0], vec_t[0][1]);
vec_y = _mm256_add_ps(vec_t[0][2], vec_sum);
//vec_cb = vec_t[1][0] + vec_t[1][1] + vec_t[1][2] +128
vec_sum = _mm256_add_ps(vec_t[1][0], vec_t[1][1]);
vec_sum = _mm256_add_ps(vec_t[1][2], vec_sum);
vec_cb = _mm256_add_ps(vec_128, vec_sum);
//vec_cr = vec_t[2][0] + vec_t[2][1] + vec_t[2][2] +128
vec_sum = _mm256_add_ps(vec_t[2][0], vec_t[2][1]);
vec_sum = _mm256_add_ps(vec_t[2][2], vec_sum);
vec_cr = _mm256_add_ps(vec_128, vec_sum);
_mm256_stream_ps(&image_y[i][j], vec_y);
_mm256_stream_ps(&image_cb[i][j], vec_cb);
_mm256_stream_ps(&image_cr[i][j], vec_cr);
}
}
t2=_rdtsc();
if((t2-t1)<min){
min=t2-t1;
printf("\n%li", t2-t1);
}
}while(1);
//inorder to avoid optimization for non used values
printf("%f", image_y[MAX1/2][MAX2/2]);
printf("%f", image_cb[MAX1/2][MAX2/2]);
printf("%f", image_cr[MAX1/2][MAX2/2]);
return 0;
}
更新:
128x128 图像尺寸的最佳记录周期如下:
单核:
Scalar code: 88k
Auto-vectorized: 59k
Vectorized using intrinsics: **21k**
vectorized by #pragma omp simd: 59k
多核:
Scalar code: 25k
Auto-vectorized: 13k
Vectorized using intrinsics: **226k**
vectorized by #pragma omp .. simd: 22k
对于1024x1024的图片尺寸如下:
单核:
Scalar code: 7M
Auto-vectorized: 3M
Vectorized using intrinsics: **3M**
vectorized by #pragma omp simd: 3M
多核:
Scalar code: 6M
Auto-vectorized: 6M
Vectorized using intrinsics: **15M**
vectorized by #pragma omp parallel for simd: 8M
在尝试了不同的想法后,通过在 #pragma omp parallel for
omp_set_dynamic(3);
因此结果是:
Vectorized using intrinsics and Multi-core:
MAX1=128 --> 28k
MAX1=1024 --> 3M
这些结果不再奇怪了。
任何新结果都将在以后的更新中添加到此答案中。