尝试使用 OrderedDict 数据结构编写复杂算法

Trying to code a complex algorithm with `OrderedDict` data Structure

我正在尝试编写算法:

我有这个 OrderedDict 数据类型的输入,如下所示:

odict_items([(3, [(0, 1), (1, 1), (1, 1)]), (11, [(0, 0), (1, 1), (1, 1)]), (12, [(0, 0), (1, 1), (1, 1)])])

我正在尝试编写一个函数来在每个 key 中添加相同元组的数量,例如预期输出如下所示:如果有 (1,1) 个相同的元组,则 [=16] =] 如果是 2 的两倍,那么一个:

odict_items([(3, [(0, 1), (1, 1), (1, 1)],2), (11, [(0, 0), (1, 1), (1, 1)],2), (12, [(0, 0), (1, 0), (1, 1)]),1])

这是我的尝试,但如何改进它并将其添加到 OrderedDict

def foo(OrderedDict):
    listOfDic = list(makeDataStruc().items())
    tupleCounter = 0
    for i in range(len(listOfDic[1])):
        if listOfDic[1][1][i][0] == 1 and listOfDic[1][1][i][1] == 1:
            tupleCounter += 1
    return tupleCounter

我哪里出错了?

我做出以下假设,

  • 您只想将 (1,1) 的计数添加到 OrderedDict
  • 您不想创建覆盖当前 OrderedDict 的新数据结构。
  • 可以修改原词典

现在根据问题中可用的信息和上述假设,一种可能的解决方案是用包含两个元素的列表替换每个值,即`[原始值,(1, 1) 的计数]

from collections import OrderedDict

odict_items = [(3, [(0, 1), (1, 1), (1, 1)]),
               (11, [(0, 0), (1, 1), (1, 1)]),
               (12, [(0, 0), (1, 1), (1, 1)])]

my_odict = OrderedDict()

for item in odict_items:
    k, v = item
    my_odict[k] = v

现在计算每个值中 (1,1) 的出现次数并相应地更新值

pattern_to_find = (1, 1)

for key, value in my_odict.items():
    tuple_count = value.count(pattern_to_find)
    new_value = [value, tuple_count]
    my_odict[key] = new_value

现在词典有以下内容:

OrderedDict([(3, [[(0, 1), (1, 1), (1, 1)], 2]),
             (11, [[(0, 0), (1, 1), (1, 1)], 2]),
             (12, [[(0, 0), (1, 1), (1, 1)], 2])])

现在您可以创建附加函数来仅访问值或元组计数

# Returns the count of (1, 1) only
def get_count(my_dict, key):
    return my_dict[key][1]

# Return the original value only
def get_tuple(my_dict, key):
    return my_dict[key][0]

所以你可以像这样使用它们

print(my_odict[3])
# [[(0, 1), (1, 1), (1, 1)], 2]

print(get_count(my_odict,3))
# 2

print(get_tuple(my_odict, 3))
# [(0, 1), (1, 1), (1, 1)]