我在编写有关运动规划的代码时遇到此错误。如何摆脱它?

I had this error while writing a code on motion planning. How to get rif of it?

import time, timeit, random, pygame, sys
from math import *
import numpy as np


XDIM = 1000 #window length 
YDIM = 1200 #window breadth

WINSIZE = [XDIM, YDIM]
EPSILON = 7.0 #threshold 
NUMNODES = 10000
GOAL_RADIUS = 10
MIN_DISTANCE_TO_ADD = 1.0 #incremental distance
GAME_LEVEL = 1

RANDOM_COUNT = 10000

pygame.init()
fpsClock = pygame.time.Clock()


#screen parameters and variable
screen = pygame.display.set_mode(WINSIZE)
pygame.display.set_caption('Q-learning')
white = 255, 240, 200
black = 20, 20, 40
red = 255, 0, 0
blue = 0, 255, 0
green = 0, 0, 255
cyan = 0,255,255


class Node:

    def __init__(self):
        self.x = x
        self.y = y
        self.cost = 0.0
        self.parent = None
        self.children = set()    


class RRT(__Q_table):

    def __init__(self, start, goal, 
                 obstacleList,  incremental_dist = 15.0, 
                 learning_rate=20, max_iterations = 2000, randArea= None):

        self.start = Node(start[0], start[1])
        self.end   = Node(goal[0], goal[1])
        self.Xrand = randArea[0]
        self.Yrand = randArea[1]
        self.margin = incremental_distance
        self.learning_rate = learning_rate
        self.obstacleList = obstacleList
        self.max_iterations = max_iterations


    def planning(self, animation = True):

        self.NodeList = {0 : self.start}
        i=0

        while True:
            print(i)
        if set(self.start).intersection(obstacleList) == None:
            self.NodeList.append(self.start)

            print(self.NodeList)

        rnd = self.get_random_point()
        nearest_index = self.GetNearestListIndex(rnd)
        new_node = self.steer(rnd, nearest_index)

        if self.Collision_check(new_node, self.obstacleList):

            near_indices = self.find_near_nodes(new_node, 5)
            new_node     = self.choose_parent(new_node, near_indices)
            self.nodeList[i+100] = new_node 
            self.rewire(i+100, new_node, near_indices)
            self.nodeList[new_node.parent].children.add(i+100)

            if len(self.NodeList) > self.max_iterations:
                leaves = [keys for key, node in self.NodeList.items]
                if len(leaves) > 1:
                    index = leaves[random.randint(0, len(leaves)-1)]
                    self.NodeList[self.NodeList[index].paresnt].children.discard(index)
                    self.NodeList.pop(index)
                else:
                    leaves = [key for key, node in self.NodeList.items() if len(node.children)==0]
                    index = leaves[random.randint(0, len(leaves) -1)]
                    self.NodeList[self.NodeList[index].parent].children.discard(index)
                    self.NodeList.pop(index)

            if animation == True:
                self.DrawGraph(rnd)

            for event in pygame.event.get():
                if event.type == pygame.MOUSEBUTTONDOWN:
                    if event.button == 1:
                        self.obstacleList.append((event.pos[0], event.pos[1], 30, 30))
                        self.path_validation()
                    elif event.button == 3:
                        self.end.x = event.pos[0]
                        self.end.y = event.pos[1]
                        self.path_validation()


    def path_validation(self):

        lastIndex = self.get_the_best_last_index()
        if lastIndex and set(lastIndex).intersection(obstacleList) == None:
            while self.NodeList[lastIndex].parent is not None:
                nodeIndex = lastIndex
                lastIndex = self.NodeList[lastIndex].parent

                dx = self.NodeList[nodeIndex].x - self.NodeList[lastIndex].x
                dy = self.NodeList[nodeIndex].y - self.NodeList[lastIndex].y
                d = math.sqrt.atan2(dx**2 + dy**2)
                theta = math.atan2(dy, dx)
                if not self.check_collision_extend(self.NodeList[lastIndex].x,self.NodeList[lastIndex].y, theta, d):
                    self.NodeList[lastIndex].children.discard(nodeIndex)
                    self.eliminate_branch(nodeIndex)

    def eliminate_brach(self, nodeIndex):
        safenodesList = []
        if set(nodeIndex).intersection(obstacleList) == None:
            safenodesList.append(nodeIndex)
        for not_safe in safenodesList[nodeIndex].children:
            self.eliminate_branch(not_safe)
        self.NodeList.pop(nodeIndex)


    def choose_parent(self,new_node,nearest_index):
        if len(nearest_index) == 0:
            return new_node

        if Current_point == nearest_index and self.CollisionCheck(new_node, obstacleList):

            Current_point = new_node
            return Current_point

        distanceList = []
        for i in near_indices:
            dx = new_node.x - self.NodeList[i].x
            dy = new_node.y - self.NodeList[i].y
            d = math.sqrt(dx **2 + dy **2)
            theta = math.atan2(dy, dx)
            if self.check_collision_extend(self.NodeList[i].x, self.NodeList[i].y, theta, d):
                distanceList.append(self.NodeList[i].cost + d)
            else:
                distanceList.append(float("inf"))

        minimum_cost = min(distanceList)
        minimum_index = near_indices[distacelist.index(minimum_cost)]

        if minimum_cost == float("inf"):
            print("minimum_cost is INFINITE")
            return Current_point

        Current_point.cost = minimum_cost
        Current_point.parent = minimum_index

        Current_point_with_maximum_Q_value = self.max_Q_nextvalue(Current_point)

        return Current_point.cost, Current_point.parent, Current_point_with_maximum_Q_value



    def steer(self, rnd, nearest_index):

        nearest_node = self.NodeList[nearest_index]
        theta = math.atan2(rnd[1] - nearest_node.y, rnd[0] - nearest_node.x)
        new_node = Node(nearest_node.x , nearest_node.y)
        new_node.x += incremental_distance * math.cos(theta)
        new_node.y += incremental_distance * math.sin(theta)

        new_node.cost = nearest_node.cost + incremental_distance
        new_node.parent = nearest_index 
        return new_node


    def get_random_point(self, Current_point=None):

        self.Current_point = Current_point
        if random.randint(0, 100) > self.learning_rate:
            rnd = [random.uniform(0, Xrand), random.uniform(0, yrand)]

        elif random.randint(0, 100) <= RANDOM_COUNT:
            Current_point = max_Q_action(Current_point)
            rnd = random_action(Current_point)
        else:
            rnd = [self.end.x, self.end.y]
        return rnd

    def get_best_last_index(self):

        disglist = [(key, self.calc_dist_to_goal(node.x, node.y)) for key, node in self.NodeList.items()]
        goal_indices = [key for key, distance in disglist if distance <= self.margin]

        if len(goal_indices) == 0:
            return None

        minimum_cost = min([self.NodeList[key].cost for key in goal_indices])
        for i in goal_indices:
            if self.NodeList[i].cost == minimum_cost:
                return i

        return None

    def gen_final_course(self, goal_indices):
        path = [[self.end.x, self.end.y]]
        while self.NodeList[goal_indices].parent is not None:
            node = self.NodeList[goal_indices]
            path.append([node.x, node.y])
            goal_indices = node.parent
        path.append([self.start.x, self.start.y])
        return path

    def calc_dist_to_goal(self, x, y):
        return np.linalg.norm([x - self.end.x, y - self.end.y])

    def find_near_nodes(self, new_node, value):
        r = self.margin * value

        distanceList = np.subtract( np.array([ (node.x, node.y) for node in self.NodeList.values() ]), (new_node.x,new_node.y))**2
        distanceList = np.sum(distanceList, axis=1)
        near_indices = np.where(distanceList <= r ** 2)
        near_indices = np.array(list(self.NodeList.keys()))[near_indices]

        return nearinds

    def rewire(self, newNodeInd, new_node, near):
        nnode = len(self.NodeList)
        for i in nearinds:
            nearNode = self.nodeList[i]

            dx = new_node.x - nearNode.x
            dy = new_node.y - nearNode.y
            d = math.sqrt(dx ** 2 + dy ** 2)

            scost = new_node.cost + d

            if near_node.cost > scost:
                theta = math.atan2(dy, dx)
                if self.check_collision_extend(nearNode.x, nearNode.y, theta, d):
                    self.NodeList[nearNode.parent].children.discard(i)
                    nearNode.parent = newNodeInd
                    nearNode.cost = scost
                    new_node.children.add(i)

    def check_collision_extend(self, nix, niy, theta, d):

        tmpNode = Node(nix,niy)

        for i in range(int(d/5)):
            tmpNode.x += 5 * math.cos(theta)
            tmpNode.y += 5 * math.sin(theta)
            if not self.CollisionCheck(tmpNode, self.obstacleList):
                return False

        return True

    def DrawGraph(self, rnd=None):

        screen.fill((255, 255, 255))
        for node in self.NodeList.values():
            if node.parent is not None:
                pygame.draw.line(screen,(0,255,0),[self.NodeList[node.parent].x,self.NodeList[node.parent].y],[node.x,node.y])

        for node in self.NodeList.values():
            if len(node.children) == 0: 
                pygame.draw.circle(screen, (255,0,255), [int(node.x),int(node.y)], 2)


        for(sx,sy,ex,ey) in self.obstacleList:
            pygame.draw.rect(screen,(0,0,0), [(sx,sy),(ex,ey)])

        pygame.draw.circle(screen, (255,0,0), [self.start.x, self.start.y], 10)
        pygame.draw.circle(screen, (0,0,255), [self.end.x, self.end.y], 10)

        lastIndex = self.get_best_last_index()
        if lastIndex is not None:
            path = self.gen_final_course(lastIndex)

            ind = len(path)
            while ind > 1:
                pygame.draw.line(screen,(255,0,0),path[ind-2],path[ind-1])
                ind-=1

        pygame.display.update()


    def Get_nearest_list_index(self, rnd):
        distanceList = np.subtract( np.array([ (node.x, node.y) for node in self.NodeList.values() ]), (rnd[0],rnd[1]))**2
        distanceList = np.sum(distanceList, axis=1)
        minimum_index = list(self.NodeList.keys())[np.argmin(distancelist)]
        return minimum_index

    def Collision_check(self, node, obstacleList):
        for(sx,sy,ex,ey) in obstacleList:
            sx,sy,ex,ey = sx+2,sy+2,ex+2,ey+2
            if node.x > sx and node.x < sx+ex:
                if node.y > sy and node.y < sy+ey:
                    return False

        return True  


def main():
    print("start RRT path planning")


    obstacleList = [
        (400, 380, 400, 20),
        (400, 220, 20, 180),
        (500, 280, 150, 20),
        (0, 500, 100, 20),
        (500, 450, 20, 150),
        (400, 100, 20, 80),
        (100, 100, 100, 20)
    ]  

    rrt = RRT(obstacleList = obstacleList, start =[10, 580], goal = [540, 150],
              randArea = [XDIM, YDIM])
    path = rrt.Planning(animation=show_animation)


if __name__ == '__main__':
    main()  

错误是 -

TypeError                                 Traceback (most recent call last)
<ipython-input-1-6e62c6da9819> in <module>
    531 
    532 if __name__ == '__main__':
--> 533     main()
    534 

<ipython-input-1-6e62c6da9819> in main()
    525 
    526     rrt = RRT(obstacleList = obstacleList, start =[10, 580], goal = [540, 150],
--> 527               randArea = [XDIM, YDIM])
    528 
    529     path = rrt.planning(animation=show_animation)

<ipython-input-1-6e62c6da9819> in __init__(self, start, goal, obstacleList, incremental_dist, learning_rate, max_iterations, randArea)
    249                  learning_rate=20, max_iterations = 2000, randArea= None):
    250 
--> 251         self.start = Node(start[0], start[1])
    252         self.end   = Node(goal[0], goal[1])
    253         self.Xrand = randArea[0]

TypeError: init() 采用 1 个位置参数,但给出了 3 个

我正在尝试使用 pygame 模块在 python 中编写运动规划代码。我遇到了上面给出的这个错误。我什至尝试将参数减少到构造函数 init() 中,但没有成功。

请注意,这里我不是要继承。

谢谢

替换

path = rrt.Planning(animation=show_animation)

path = rrt.planning(animation=show_animation)

编辑:添加跟踪日志后

您的错误是您提供了两个参数来创建 Node:

self.start = Node(start[0], start[1])

但是它的 __init__ 方法期望 none 被传递:

class Node:

    def __init__(self):