gpt2 同时使用 past 和 attention_mask

Using past and attention_mask at the same time for gpt2

我正在处理一批不同长度的句子,因此我计划利用 gpt2 中的填充 + attention_mask 功能。

同时,我需要为每个句子添加一个后缀词组和运行N个不同的推论。例如,给定句子 "I like to drink coke",我可能需要 运行 两个不同的推论:"I like to drink coke. Coke is good" 和 "I like to drink coke. Drink is good"。因此,我试图通过使用 "past" 功能来改进推理时间:https://huggingface.co/transformers/quickstart.html#using-the-past 所以我只处理一次原始句子(例如 "I like to drink coke"),然后我以某种方式扩展结果能够与其他两个句子一起使用:"Coke is good" 和 "Drink is good"。

您将在下面找到一个简单的代码,它试图表示我是如何尝试执行此操作的。为简单起见,我只是在每个句子中添加一个后缀短语(......但我仍然希望我的原始想法是可能的):

from transformers.tokenization_gpt2 import GPT2Tokenizer
from transformers.modeling_gpt2 import GPT2LMHeadModel

tokenizer = GPT2Tokenizer.from_pretrained('gpt2', pad_token='<|endoftext|>')
model = GPT2LMHeadModel.from_pretrained('gpt2')

# Complete phrases are: "I like to drink soda without sugar" and "Go watch TV alone, I am not going"
docs = ["I like to drink soda", "Go watch TV"]
docs_tensors = tokenizer.batch_encode_plus(
    [d for d in docs], pad_to_max_length=True, return_tensors='pt')

docs_next = ["without sugar", "alone, I am not going"]
docs_next_tensors = tokenizer.batch_encode_plus(
    [d for d in docs_next], pad_to_max_length=True, return_tensors='pt')

# predicting the first part of each phrase
_, past = model(docs_tensors['input_ids'], attention_mask=docs_tensors['attention_mask'])

# predicting the rest of the phrase
logits, _ = model(docs_next_tensors['input_ids'], attention_mask=docs_next_tensors['attention_mask'], past=past)
logits = logits[:, -1]
_, top_indices_results = logits.topk(30)

我收到的错误如下:

Traceback (most recent call last):
  File "/Applications/PyCharm CE.app/Contents/plugins/python-ce/helpers/pydev/pydevd.py", line 1434, in _exec
    pydev_imports.execfile(file, globals, locals)  # execute the script
  File "/Applications/PyCharm CE.app/Contents/plugins/python-ce/helpers/pydev/_pydev_imps/_pydev_execfile.py", line 18, in execfile
    exec(compile(contents+"\n", file, 'exec'), glob, loc)
  File "/Users/damiox/Workspace/xxLtd/yy/stress-test-withpast2.py", line 26, in <module>
    logits, _ = model(docs_next_tensors['input_ids'], attention_mask=docs_next_tensors['attention_mask'], past=past)
  File "/Users/damiox/.local/share/virtualenvs/yy-uMxmjV2h/lib/python3.7/site-packages/torch/nn/modules/module.py", line 532, in __call__
    result = self.forward(*input, **kwargs)
  File "/Users/damiox/.local/share/virtualenvs/yy-uMxmjV2h/lib/python3.7/site-packages/transformers/modeling_gpt2.py", line 593, in forward
    inputs_embeds=inputs_embeds,
  File "/Users/damiox/.local/share/virtualenvs/yy-uMxmjV2h/lib/python3.7/site-packages/torch/nn/modules/module.py", line 532, in __call__
    result = self.forward(*input, **kwargs)
  File "/Users/damiox/.local/share/virtualenvs/yy-uMxmjV2h/lib/python3.7/site-packages/transformers/modeling_gpt2.py", line 476, in forward
    hidden_states, layer_past=layer_past, attention_mask=attention_mask, head_mask=head_mask[i]
  File "/Users/damiox/.local/share/virtualenvs/yy-uMxmjV2h/lib/python3.7/site-packages/torch/nn/modules/module.py", line 532, in __call__
    result = self.forward(*input, **kwargs)
  File "/Users/damiox/.local/share/virtualenvs/yy-uMxmjV2h/lib/python3.7/site-packages/transformers/modeling_gpt2.py", line 226, in forward
    self.ln_1(x), layer_past=layer_past, attention_mask=attention_mask, head_mask=head_mask
  File "/Users/damiox/.local/share/virtualenvs/yy-uMxmjV2h/lib/python3.7/site-packages/torch/nn/modules/module.py", line 532, in __call__
    result = self.forward(*input, **kwargs)
  File "/Users/damiox/.local/share/virtualenvs/yy-uMxmjV2h/lib/python3.7/site-packages/transformers/modeling_gpt2.py", line 189, in forward
    attn_outputs = self._attn(query, key, value, attention_mask, head_mask)
  File "/Users/damiox/.local/share/virtualenvs/yy-uMxmjV2h/lib/python3.7/site-packages/transformers/modeling_gpt2.py", line 150, in _attn
    w = w + attention_mask
RuntimeError: The size of tensor a (11) must match the size of tensor b (6) at non-singleton dimension 3

Process finished with exit code 1

最初我认为这与 https://github.com/huggingface/transformers/issues/3031 有关 - 所以我重新构建了最新的 master 来尝试修复,但我仍然遇到这个问题。

为了使您当前的代码片段有效,您将按如下方式组合以前的和新的注意力掩码:

from transformers.tokenization_gpt2 import GPT2Tokenizer
from transformers.modeling_gpt2 import GPT2LMHeadModel
import torch

tokenizer = GPT2Tokenizer.from_pretrained('gpt2', pad_token='<|endoftext|>')
model = GPT2LMHeadModel.from_pretrained('gpt2')

# Complete phrases are: "I like to drink soda without sugar" and "Go watch TV alone, I am not going"
docs = ["I like to drink soda", "Go watch TV"]
docs_tensors = tokenizer.batch_encode_plus(
    [d for d in docs], pad_to_max_length=True, return_tensors='pt')

docs_next = ["without sugar", "alone, I am not going"]
docs_next_tensors = tokenizer.batch_encode_plus(
    [d for d in docs_next], pad_to_max_length=True, return_tensors='pt')

# predicting the first part of each phrase
_, past = model(docs_tensors['input_ids'], attention_mask=docs_tensors['attention_mask'])

# predicting the rest of the phrase
attn_mask = torch.cat([docs_tensors['attention_mask'], docs_next_tensors['attention_mask']], dim=-1)
logits, _ = model(docs_next_tensors['input_ids'], attention_mask=attn_mask, past=past)
logits = logits[:, -1]
_, top_indices_results = logits.topk(30)

如果您想测试一个句子开头的两个可能的后缀,您可能必须将过去的变量克隆的次数与后缀的次数一样多。这意味着前缀 input_ids 的批量大小必须与后缀 input_ids 的批量大小匹配才能使其正常工作。

如果您的前缀 input_ids 之一被填充(这在上面的代码中未显示),您还必须更改后缀 input_ids 的位置编码输入(GPT2 使用绝对位置编码) - 请查看 https://github.com/huggingface/transformers/issues/3021 了解它是如何完成的)。