Verilog 模块未按预期更新
Verilog Module not updating as expected
我目前正在使用 Verilog 设计处理器,部分过程是使用 booth 算法创建乘法函数,代码如下:
//Booths Algorithm
module boothNumber(in, out, bits);
input signed [31:0] in;
input [2:0] bits;
output reg [63:0] out;
always @(in or out or bits)
begin
case (bits)
3'b001,
3'b010: out <= $signed(in);
3'b011:
begin
out <= $signed(in) + $signed(in);
end
3'b100:
begin
out <= - $signed(in) - $signed(in);
end
3'b101,
3'b110:
begin
out <= - $signed(in);
end
default: out <= $signed(64'b0);
//3'b000: output = $signed(64'b0);
//3'b111: output = $signed(64'b0);
//both of these are in default instead
endcase
end
endmodule
module booth(mc, mp, prod);
input signed[31:0] mc, mp;
output reg signed[63:0] prod;
wire signed[63:0] temp [15:0];
boothNumber num0(.in(mc), .out(temp[0]), .bits({mp[1:0], 1'b0}));
boothNumber num1(.in(mc), .out(temp[1]), .bits({mp[3:1]}));
boothNumber num2(.in(mc), .out(temp[2]), .bits({mp[5:3]}));
boothNumber num3(.in(mc), .out(temp[3]), .bits({mp[7:5]}));
boothNumber num4(.in(mc), .out(temp[4]), .bits({mp[9:7]}));
boothNumber num5(.in(mc), .out(temp[5]), .bits({mp[11:9]}));
boothNumber num6(.in(mc), .out(temp[6]), .bits({mp[13:11]}));
boothNumber num7(.in(mc), .out(temp[7]), .bits({mp[15:13]}));
boothNumber num8(.in(mc), .out(temp[8]), .bits({mp[17:15]}));
boothNumber num9(.in(mc), .out(temp[9]), .bits({mp[19:17]}));
boothNumber num10(.in(mc), .out(temp[10]), .bits({mp[21:19]}));
boothNumber num11(.in(mc), .out(temp[11]), .bits({mp[23:21]}));
boothNumber num12(.in(mc), .out(temp[12]), .bits({mp[25:23]}));
boothNumber num13(.in(mc), .out(temp[13]), .bits({mp[27:25]}));
boothNumber num14(.in(mc), .out(temp[14]), .bits({mp[29:27]}));
boothNumber num15(.in(mc), .out(temp[15]), .bits({mp[31:29]}));
always @(temp)
begin
prod <= $signed({{32{temp[0][31]}}, temp[0]} << 0) + $signed({{30{temp[1][31]}}, temp[1]} << 2) + $signed({{28{temp[2][31]}}, temp[2]} << 4) + $signed({{26{temp[3][31]}}, temp[3]} << 6) + $signed({{24{temp[4][31]}}, temp[4]} << 8) + $signed({{22{temp[5][31]}}, temp[5]} << 10) + $signed({{20{temp[6][31]}}, temp[6]} << 12) + $signed({{18{temp[7][31]}}, temp[7]} << 14) + $signed({{16{temp[8][31]}}, temp[8]} << 16) + $signed({{14{temp[9][31]}}, temp[9]} << 18) + $signed({{12{temp[10][31]}}, temp[10]} << 20) + $signed({{10{temp[11][31]}}, temp[11]} << 22) + $signed({{8{temp[12][31]}}, temp[12]} << 24) + $signed({{6{temp[13][31]}}, temp[13]} << 26) + $signed({{4{temp[14][31]}}, temp[14]} << 28) + $signed({{2{temp[15][31]}}, temp[15]} << 30);
end
endmodule
然后我使用 Quartus 中的 Modelsim-altera 仿真软件在以下测试平台上进行测试:
`timescale 1ns/10ps
module test_test;
reg [31:0] A, B;
reg [4:0] control;
wire [63:0] Z;
reg cout;
reg c_in;
reg Clock;
initial
begin
Clock <= 0;
forever #10 Clock <= ~Clock;
end
ALU the_ALU(A, B, Z, control);
initial
begin
A = 32'b0; //Q
B = 32'b0;
control = 5'b01011;
c_in = 1'b0;
cout = 1'b0;
#50 A <= 32'sd5;
B <= 32'sd3;
#50 A <= 32'sd55;
#50 A <= 32'sd55;
#50 A <= 32'sd55;
#50 A <= 32'sd4;
#50 A <= 32'sd4;
#50 A <= 32'sd5;
#50 A <= 32'sd6;
#50 A <= 32'sd7;
end
endmodule
将此代码用于 ALU(略有删节,删除了其他控制输出)
module ALU (A, B, Z, control);
input signed [31:0] A, B;
input [4:0] control;
output reg signed [63:0] Z;
wire cout;
reg c_in;
wire signed [63:0] adder_out;
wire signed [63:0] booth_out;
always@(A or B or control)
begin
c_in = 1'b0;
case(control) //Would be more cases
5'b01011 :
begin //MUL
Z = booth_outt;
end
endcase
end
RC_ADDER ALU_adder(.sout(adder_out), .cout(cout), .a(A), .b(B), .cin(c_in));
booth ALU_booth(.mc(A), .mp(B), .prod(booth_out));
endmodule
在所有这些之后,发生了奇怪的模拟。在测试台中第一次更改 A 或 B 后,输出 Z 会适当更新,但在下一次更改期间不会更新,然后 "lags behind" 继续模拟,仅在以下情况下更新为先前的答案A或B被改变。 (像这样)
我已经花了很多时间重新模拟,如果有任何建议,我将不胜感激
您的敏感度列表是 A or B or control
,因此它只会在其中一项更改时更新。如果您不尝试创建闩锁,则使用 always @*
在任何输入发生变化时进行更新会更容易。
我目前正在使用 Verilog 设计处理器,部分过程是使用 booth 算法创建乘法函数,代码如下:
//Booths Algorithm
module boothNumber(in, out, bits);
input signed [31:0] in;
input [2:0] bits;
output reg [63:0] out;
always @(in or out or bits)
begin
case (bits)
3'b001,
3'b010: out <= $signed(in);
3'b011:
begin
out <= $signed(in) + $signed(in);
end
3'b100:
begin
out <= - $signed(in) - $signed(in);
end
3'b101,
3'b110:
begin
out <= - $signed(in);
end
default: out <= $signed(64'b0);
//3'b000: output = $signed(64'b0);
//3'b111: output = $signed(64'b0);
//both of these are in default instead
endcase
end
endmodule
module booth(mc, mp, prod);
input signed[31:0] mc, mp;
output reg signed[63:0] prod;
wire signed[63:0] temp [15:0];
boothNumber num0(.in(mc), .out(temp[0]), .bits({mp[1:0], 1'b0}));
boothNumber num1(.in(mc), .out(temp[1]), .bits({mp[3:1]}));
boothNumber num2(.in(mc), .out(temp[2]), .bits({mp[5:3]}));
boothNumber num3(.in(mc), .out(temp[3]), .bits({mp[7:5]}));
boothNumber num4(.in(mc), .out(temp[4]), .bits({mp[9:7]}));
boothNumber num5(.in(mc), .out(temp[5]), .bits({mp[11:9]}));
boothNumber num6(.in(mc), .out(temp[6]), .bits({mp[13:11]}));
boothNumber num7(.in(mc), .out(temp[7]), .bits({mp[15:13]}));
boothNumber num8(.in(mc), .out(temp[8]), .bits({mp[17:15]}));
boothNumber num9(.in(mc), .out(temp[9]), .bits({mp[19:17]}));
boothNumber num10(.in(mc), .out(temp[10]), .bits({mp[21:19]}));
boothNumber num11(.in(mc), .out(temp[11]), .bits({mp[23:21]}));
boothNumber num12(.in(mc), .out(temp[12]), .bits({mp[25:23]}));
boothNumber num13(.in(mc), .out(temp[13]), .bits({mp[27:25]}));
boothNumber num14(.in(mc), .out(temp[14]), .bits({mp[29:27]}));
boothNumber num15(.in(mc), .out(temp[15]), .bits({mp[31:29]}));
always @(temp)
begin
prod <= $signed({{32{temp[0][31]}}, temp[0]} << 0) + $signed({{30{temp[1][31]}}, temp[1]} << 2) + $signed({{28{temp[2][31]}}, temp[2]} << 4) + $signed({{26{temp[3][31]}}, temp[3]} << 6) + $signed({{24{temp[4][31]}}, temp[4]} << 8) + $signed({{22{temp[5][31]}}, temp[5]} << 10) + $signed({{20{temp[6][31]}}, temp[6]} << 12) + $signed({{18{temp[7][31]}}, temp[7]} << 14) + $signed({{16{temp[8][31]}}, temp[8]} << 16) + $signed({{14{temp[9][31]}}, temp[9]} << 18) + $signed({{12{temp[10][31]}}, temp[10]} << 20) + $signed({{10{temp[11][31]}}, temp[11]} << 22) + $signed({{8{temp[12][31]}}, temp[12]} << 24) + $signed({{6{temp[13][31]}}, temp[13]} << 26) + $signed({{4{temp[14][31]}}, temp[14]} << 28) + $signed({{2{temp[15][31]}}, temp[15]} << 30);
end
endmodule
然后我使用 Quartus 中的 Modelsim-altera 仿真软件在以下测试平台上进行测试:
`timescale 1ns/10ps
module test_test;
reg [31:0] A, B;
reg [4:0] control;
wire [63:0] Z;
reg cout;
reg c_in;
reg Clock;
initial
begin
Clock <= 0;
forever #10 Clock <= ~Clock;
end
ALU the_ALU(A, B, Z, control);
initial
begin
A = 32'b0; //Q
B = 32'b0;
control = 5'b01011;
c_in = 1'b0;
cout = 1'b0;
#50 A <= 32'sd5;
B <= 32'sd3;
#50 A <= 32'sd55;
#50 A <= 32'sd55;
#50 A <= 32'sd55;
#50 A <= 32'sd4;
#50 A <= 32'sd4;
#50 A <= 32'sd5;
#50 A <= 32'sd6;
#50 A <= 32'sd7;
end
endmodule
将此代码用于 ALU(略有删节,删除了其他控制输出)
module ALU (A, B, Z, control);
input signed [31:0] A, B;
input [4:0] control;
output reg signed [63:0] Z;
wire cout;
reg c_in;
wire signed [63:0] adder_out;
wire signed [63:0] booth_out;
always@(A or B or control)
begin
c_in = 1'b0;
case(control) //Would be more cases
5'b01011 :
begin //MUL
Z = booth_outt;
end
endcase
end
RC_ADDER ALU_adder(.sout(adder_out), .cout(cout), .a(A), .b(B), .cin(c_in));
booth ALU_booth(.mc(A), .mp(B), .prod(booth_out));
endmodule
在所有这些之后,发生了奇怪的模拟。在测试台中第一次更改 A 或 B 后,输出 Z 会适当更新,但在下一次更改期间不会更新,然后 "lags behind" 继续模拟,仅在以下情况下更新为先前的答案A或B被改变。 (像这样)
我已经花了很多时间重新模拟,如果有任何建议,我将不胜感激
您的敏感度列表是 A or B or control
,因此它只会在其中一项更改时更新。如果您不尝试创建闩锁,则使用 always @*
在任何输入发生变化时进行更新会更容易。