扩展并填充 Pandas DataFrame 以匹配另一个
Extend and fill a Pandas DataFrame to match another
我有两个 Pandas DataFrame A 和 B。
它们在某一点上具有相同的索引(每周日期):该系列在年初结束
对于 A 并继续在框架 B 中进行大量观察。我需要将数据框架 A 设置为与框架 B 具有相同的索引 - 并用自己的最后一个值填充每一列。
提前致谢。
吉洪
编辑:感谢您对问题的建议。我需要的是 dfA_before 查看 dfB 并成为 dfA_after:
print(dfA_before)
a b
0 10 100
1 20 200
2 30 300
print(dfB)
a b
0 11 111
1 22 222
2 33 333
3 44 444
4 55 555
print(dfA_after)
a b
0 10 100
1 20 200
2 30 300
3 30 300
4 30 300
这应该有效
import numpy as np
import pandas as pd
df1 = pd.DataFrame({'a':[10,20,30],'b':[100,200,300]})
df2 = pd.DataFrame({'a':[11,22,33,44,55],'c':[111,222,333,444,555]})
# solution
last = df1.iloc[-1].to_numpy()
df3 = pd.DataFrame(np.tile(last,(2,1)),
columns=df1.columns)
df4 = df1.append(df3,ignore_index=True)
# method 2
for _ in range(len(df2)-len(df1)):
df1.loc[len(df1)] = df1.loc[len(df1)-1]
# method 3
for _ in range(df2.shape[0]-df1.shape[0]):
df1 = df1.append(df1.loc[len(df1)-1],ignore_index=True)
# result
a b
0 10 100
1 20 200
2 30 300
3 30 300
4 30 300
可能效率很低-我是初学者:
dfA_New = dfB.copy()
dfA_New.loc[:] = 0
dfA_New.loc[:] = dfA.loc[:]
dfA_New.fillna(method='ffill', inplace = True)
dfA = dfA_New
我有两个 Pandas DataFrame A 和 B。
它们在某一点上具有相同的索引(每周日期):该系列在年初结束 对于 A 并继续在框架 B 中进行大量观察。我需要将数据框架 A 设置为与框架 B 具有相同的索引 - 并用自己的最后一个值填充每一列。
提前致谢。
吉洪
编辑:感谢您对问题的建议。我需要的是 dfA_before 查看 dfB 并成为 dfA_after:
print(dfA_before)
a b
0 10 100
1 20 200
2 30 300
print(dfB)
a b
0 11 111
1 22 222
2 33 333
3 44 444
4 55 555
print(dfA_after)
a b
0 10 100
1 20 200
2 30 300
3 30 300
4 30 300
这应该有效
import numpy as np
import pandas as pd
df1 = pd.DataFrame({'a':[10,20,30],'b':[100,200,300]})
df2 = pd.DataFrame({'a':[11,22,33,44,55],'c':[111,222,333,444,555]})
# solution
last = df1.iloc[-1].to_numpy()
df3 = pd.DataFrame(np.tile(last,(2,1)),
columns=df1.columns)
df4 = df1.append(df3,ignore_index=True)
# method 2
for _ in range(len(df2)-len(df1)):
df1.loc[len(df1)] = df1.loc[len(df1)-1]
# method 3
for _ in range(df2.shape[0]-df1.shape[0]):
df1 = df1.append(df1.loc[len(df1)-1],ignore_index=True)
# result
a b
0 10 100
1 20 200
2 30 300
3 30 300
4 30 300
可能效率很低-我是初学者:
dfA_New = dfB.copy()
dfA_New.loc[:] = 0
dfA_New.loc[:] = dfA.loc[:]
dfA_New.fillna(method='ffill', inplace = True)
dfA = dfA_New