如何通过 ID select 数据框中的行信息

How to select row information in dataframe over ID

我是 python 的新人。我有一个像这样的大数据框:

    ID  x   y
0   1   x1  y1
1   0   x2  y2
2   0   x3  y3
3   2   x4  y4
4   1   x5  y5
5   2   x6  y6

我想在 ID 1 和 2 之间取几个 (x;y),在这样的数据框中:

    coordinates
0   (x1,y1), (x2,y2), (x3,y3), (x4,y4)
1   (x5,y5), (x6,y6)

我已经尝试了 double 迭代,但计算时间太长。我怎样才能得到这个东西?

一个想法是按每个 1 起始值创建组并聚合元组的自定义 lambda 函数:

df['new'] = (df['ID'] == 1).cumsum()
print (df)
   ID   x   y  new
0   1  x1  y1    1
1   0  x2  y2    1
2   0  x3  y3    1
3   2  x4  y4    1
4   1  x5  y5    2
5   2  x6  y6    2

df1 = (df.groupby('new')['x','y']
         .apply(lambda x: list(map(tuple, x.values.tolist())))
         .reset_index(name='coordinates'))
print (df1)
   new                               coordinates
0    1  [(x1, y1), (x2, y2), (x3, y3), (x4, y4)]
1    2                      [(x5, y5), (x6, y6)]

没有新列的类似解决方案:

df1 = (df.groupby((df['ID'].rename('new') == 1).cumsum())['x','y']
         .apply(lambda x: list(map(tuple, x.values.tolist())))
         .reset_index(name='coordinates'))
print (df1)
   new                               coordinates
0    1  [(x1, y1), (x2, y2), (x3, y3), (x4, y4)]
1    2                      [(x5, y5), (x6, y6)]

编辑:

print (df)
   ID   x   y
0   1  x1  y1
1   0  x2  y2
2   0  x3  y3
3   2  x4  y4
4   0  x7  y7
4   0  x8  y8
4   1  x5  y5
5   2  x6  y6

g = df['ID'].eq(1).cumsum()
s = df['ID'].shift().eq(2).cumsum()

df = df[s.groupby(g).transform('min').eq(s)]
print (df)
   ID   x   y
0   1  x1  y1
1   0  x2  y2
2   0  x3  y3
3   2  x4  y4
4   1  x5  y5
5   2  x6  y6

df1 = (df.groupby((df['ID'].rename('new') == 1).cumsum())['x','y']
         .apply(lambda x: list(map(tuple, x.values.tolist())))
         .reset_index(name='coordinates'))
print (df1)
   new                               coordinates
0    1  [(x1, y1), (x2, y2), (x3, y3), (x4, y4)]
1    2                      [(x5, y5), (x6, y6)]

您可以使用 apply tuple across axis 1, and groupby your "groups" using cumsum with eq(1) and use list aggregation:

(df[['x', 'y']].apply(tuple, axis=1)
 .groupby(df['ID'].eq(1).cumsum()).agg(list))

[出]

ID
1    [(x1, y1), (x2, y2), (x3, y3), (x4, y4)]
2                        [(x5, y5), (x6, y6)]
dtype: object

或者如果预期输出是逗号分隔的坐标字符串,您可以 apply join 函数:

(df[['x', 'y']].apply(tuple, axis=1).astype(str)
 .groupby(df['ID'].eq(1).cumsum()).apply(', '.join))

[出]

ID
1    ('x1', 'y1'), ('x2', 'y2'), ('x3', 'y3'), ('x4', 'y4')
2                                ('x5', 'y5'), ('x6', 'y6')
dtype: object