关系化 json 嵌套数组

Relationalize json nested array

我有以下目录,想用AWS glue把它压扁?

| accountId | resourceId | items                                                           |
|-----------|------------|-----------------------------------------------------------------|
| 1         | r1         | [{name: "tool", version: "1.0"}, {name: "app", version: "1.0"}] |
| 1         | r2         | [{name: "tool", version: "2.0"}, {name: "app", version: "2.0"}] |
| 2         | r3         | [{name: "tool", version: "3.0"}, {name: "app", version: "3.0"}] |

我想将其展平为以下内容:

| accountId | resourceId | name | version |
|-----------|------------|------|---------|
| 1         | r1         | tool | 1.0     |
| 1         | r1         | app  | 1.0     |
| 1         | r2         | tool | 2.0     |
| 1         | r2         | app  | 2.0     |
| 2         | r3         | tool | 3.0     |
| 2         | r3         | app  | 3.0     |

Relationalize.apply只能压平嵌套项,不能将accountIdresourceId带入结果,请问有什么办法解决吗?

在 Pyspark 中,如果数组元素的结构是有效的 JSON,如下所示:

{"name": "tool", "version": "1.0"}

您可以使用 explode + from_json 将其解析为 struct

但是这里你需要做一些清洁工作。一种方法是在分解 items 列以获取地图列后使用 str_to_map 函数。然后再次分解它并旋转以获得地图键作为列。

df = spark.createDataFrame([
    (1, "r1", ['{name: "tool", version: "1.0"}', '{name: "app", version: "1.0"}']),
    (1, "r2", ['{name: "tool", version: "2.0"}', '{name: "app", version: "2.0"}']),
    (2, "r3", ['{name: "tool", version: "3.0"}', '{name: "app", version: "3.0"}'])
], ["accountId", "resourceId", "items"])

# remove leading and trailing {} and convert to map
sql_expr = "str_to_map(trim(BOTH '{}' FROM items), ',', ':')"

df.withColumn("items", explode(col("items"))) \
  .select(col("*"), explode(expr(sql_expr))) \
  .groupBy("accountId", "resourceId", "items") \
  .pivot("key") \
  .agg(first(expr("trim(BOTH '\"' FROM trim(value))"))) \
  .drop("items")\
  .show()

#+---------+----------+--------+----+
#|accountId|resourceId| version|name|
#+---------+----------+--------+----+
#|        1|        r1|     1.0| app|
#|        1|        r2|     2.0| app|
#|        2|        r3|     3.0|tool|
#|        2|        r3|     3.0| app|
#|        1|        r2|     2.0|tool|
#|        1|        r1|     1.0|tool|
#+---------+----------+--------+----+

另一个简单的方法,如果你知道所有的键,是使用 regexp_extract 从字符串中提取值:

df.withColumn("items", explode(col("items"))) \
  .withColumn("name", regexp_extract("items", "name: \"(.+?)\"[,}]", 1)) \
  .withColumn("version", regexp_extract("items", "version: \"(.+?)\"[,}]", 1)) \
  .drop("items") \
  .show()