弹性搜索路口查询
Elastic Search Intersection Query
我想获取按总数排序的用户列表的常用词。
示例:
我有一个用户使用的单词索引。
文档:
[
{
user_id: 1,
word: 'food',
count: 2
},
{
user_id: 1,
word: 'thor',
count: 1
},
{
user_id: 1,
word: 'beer',
count: 7
},
{
user_id: 2,
word: 'summer',
count: 12
},
{
user_id: 2,
word: 'thor',
count: 4
},
{
user_id: 1,
word: 'beer',
count: 2
},
..otheruserdetails..
]
输入:user_ids: [1, 2]
期望的输出:
[
{
'word': 'beer',
'total_count': 9
},
{
'word': 'thor',
'total_count': 5
}
]
我目前拥有的:
- 使用 user_id 列表中的
user_id
获取所有文档(bool 应该查询)
- 在应用层处理文档。
- 遍历每个关键字
- 检查每个关键字是否存在 user_id
- 如果是,求计数
- 否则,处理并转到下一个关键字
但是,这是不可行的,因为 word 文档会变得越来越大,而应用程序层将无法跟上。有什么方法可以将其移动到 ES 查询?
您可以使用Terms aggregation and Value Count aggregation
可以将 "Terms aggregation" 视为 "Group By"。输出将给出一个唯一的用户 ID 列表、用户下所有单词的列表以及每个单词的最终计数
{
"from": 0,
"size": 10,
"query": {
"terms": {
"user_id": [
"1",
"2"
]
}
},
"aggs": {
"users": {
"terms": {
"field": "user_id",
"size": 10
},
"aggs": {
"words": {
"terms": {
"field": "word.keyword",
"size": 10
},
"aggs": {
"word_count": {
"value_count": {
"field": "word.keyword"
}
}
}
}
}
}
}
}
结果
"hits" : [
{
"_index" : "index89",
"_type" : "_doc",
"_id" : "gFRzr3ABAWOsYG7t2tpt",
"_score" : 1.0,
"_source" : {
"user_id" : 1,
"word" : "thor",
"count" : 1
}
},
{
"_index" : "index89",
"_type" : "_doc",
"_id" : "flRzr3ABAWOsYG7t0dqI",
"_score" : 1.0,
"_source" : {
"user_id" : 1,
"word" : "food",
"count" : 2
}
},
{
"_index" : "index89",
"_type" : "_doc",
"_id" : "f1Rzr3ABAWOsYG7t19ps",
"_score" : 1.0,
"_source" : {
"user_id" : 2,
"word" : "thor",
"count" : 4
}
},
{
"_index" : "index89",
"_type" : "_doc",
"_id" : "gVRzr3ABAWOsYG7t8NrR",
"_score" : 1.0,
"_source" : {
"user_id" : 1,
"word" : "food",
"count" : 2
}
},
{
"_index" : "index89",
"_type" : "_doc",
"_id" : "glRzr3ABAWOsYG7t-Npj",
"_score" : 1.0,
"_source" : {
"user_id" : 1,
"word" : "thor",
"count" : 1
}
},
{
"_index" : "index89",
"_type" : "_doc",
"_id" : "g1Rzr3ABAWOsYG7t_9po",
"_score" : 1.0,
"_source" : {
"user_id" : 2,
"word" : "thor",
"count" : 4
}
}
]
},
"aggregations" : {
"users" : {
"doc_count_error_upper_bound" : 0,
"sum_other_doc_count" : 0,
"buckets" : [
{
"key" : 1,
"doc_count" : 4,
"words" : {
"doc_count_error_upper_bound" : 0,
"sum_other_doc_count" : 0,
"buckets" : [
{
"key" : "food",
"doc_count" : 2,
"word_count" : {
"value" : 2
}
},
{
"key" : "thor",
"doc_count" : 2,
"word_count" : {
"value" : 2
}
}
]
}
},
{
"key" : 2,
"doc_count" : 2,
"words" : {
"doc_count_error_upper_bound" : 0,
"sum_other_doc_count" : 0,
"buckets" : [
{
"key" : "thor",
"doc_count" : 2,
"word_count" : {
"value" : 2
}
}
]
}
}
]
}
}
您可以像下面这样为用户使用聚合和过滤器:
{
"size": 0,
"aggs": {
"words_stats": {
"filter": {
"terms": {
"user_id": [
"1",
"2"
]
}
},
"aggs": {
"words": {
"terms": {
"field": "word.keyword"
},
"aggs": {
"total_count": {
"sum": {
"field": "count"
}
}
}
}
}
}
}
}
结果将是:
{
"key" : "beer",
"doc_count" : 2,
"total_count" : {
"value" : 9.0
}
},
{
"key" : "thor",
"doc_count" : 2,
"total_count" : {
"value" : 5.0
}
},
{
"key" : "food",
"doc_count" : 1,
"total_count" : {
"value" : 2.0
}
},
{
"key" : "summer",
"doc_count" : 1,
"total_count" : {
"value" : 12.0
}
}
这是我必须做的:
我参考了@Rakesh Chandru 和@jaspreet chahal 的回答'并想出了这个。此查询处理 intersection
和 sorting
.
进程:
- 过滤 user_ids
- group_by(terms aggs) 关键字(示例中的单词),
- 通过聚合(总和)计数排序
{
size: 0, // because we do not want result of filtered records
query: {
terms: { user_id: user_ids } // filter by user_ids
},
aggs: {
group_by_keyword: {
terms: {
field: "keyword", // group by keyword
min_doc_count: 2, // where count >= 2
order: { agg_count: "desc" }, // order by count
size
},
aggs: {
agg_count: {
sum: {
field: "count" // aggregating count
}
}
}
}
}
}
我想获取按总数排序的用户列表的常用词。
示例: 我有一个用户使用的单词索引。
文档:
[
{
user_id: 1,
word: 'food',
count: 2
},
{
user_id: 1,
word: 'thor',
count: 1
},
{
user_id: 1,
word: 'beer',
count: 7
},
{
user_id: 2,
word: 'summer',
count: 12
},
{
user_id: 2,
word: 'thor',
count: 4
},
{
user_id: 1,
word: 'beer',
count: 2
},
..otheruserdetails..
]
输入:user_ids: [1, 2]
期望的输出:
[
{
'word': 'beer',
'total_count': 9
},
{
'word': 'thor',
'total_count': 5
}
]
我目前拥有的:
- 使用 user_id 列表中的
user_id
获取所有文档(bool 应该查询) - 在应用层处理文档。
- 遍历每个关键字
- 检查每个关键字是否存在 user_id
- 如果是,求计数
- 否则,处理并转到下一个关键字
- 遍历每个关键字
但是,这是不可行的,因为 word 文档会变得越来越大,而应用程序层将无法跟上。有什么方法可以将其移动到 ES 查询?
您可以使用Terms aggregation and Value Count aggregation
可以将 "Terms aggregation" 视为 "Group By"。输出将给出一个唯一的用户 ID 列表、用户下所有单词的列表以及每个单词的最终计数
{
"from": 0,
"size": 10,
"query": {
"terms": {
"user_id": [
"1",
"2"
]
}
},
"aggs": {
"users": {
"terms": {
"field": "user_id",
"size": 10
},
"aggs": {
"words": {
"terms": {
"field": "word.keyword",
"size": 10
},
"aggs": {
"word_count": {
"value_count": {
"field": "word.keyword"
}
}
}
}
}
}
}
}
结果
"hits" : [
{
"_index" : "index89",
"_type" : "_doc",
"_id" : "gFRzr3ABAWOsYG7t2tpt",
"_score" : 1.0,
"_source" : {
"user_id" : 1,
"word" : "thor",
"count" : 1
}
},
{
"_index" : "index89",
"_type" : "_doc",
"_id" : "flRzr3ABAWOsYG7t0dqI",
"_score" : 1.0,
"_source" : {
"user_id" : 1,
"word" : "food",
"count" : 2
}
},
{
"_index" : "index89",
"_type" : "_doc",
"_id" : "f1Rzr3ABAWOsYG7t19ps",
"_score" : 1.0,
"_source" : {
"user_id" : 2,
"word" : "thor",
"count" : 4
}
},
{
"_index" : "index89",
"_type" : "_doc",
"_id" : "gVRzr3ABAWOsYG7t8NrR",
"_score" : 1.0,
"_source" : {
"user_id" : 1,
"word" : "food",
"count" : 2
}
},
{
"_index" : "index89",
"_type" : "_doc",
"_id" : "glRzr3ABAWOsYG7t-Npj",
"_score" : 1.0,
"_source" : {
"user_id" : 1,
"word" : "thor",
"count" : 1
}
},
{
"_index" : "index89",
"_type" : "_doc",
"_id" : "g1Rzr3ABAWOsYG7t_9po",
"_score" : 1.0,
"_source" : {
"user_id" : 2,
"word" : "thor",
"count" : 4
}
}
]
},
"aggregations" : {
"users" : {
"doc_count_error_upper_bound" : 0,
"sum_other_doc_count" : 0,
"buckets" : [
{
"key" : 1,
"doc_count" : 4,
"words" : {
"doc_count_error_upper_bound" : 0,
"sum_other_doc_count" : 0,
"buckets" : [
{
"key" : "food",
"doc_count" : 2,
"word_count" : {
"value" : 2
}
},
{
"key" : "thor",
"doc_count" : 2,
"word_count" : {
"value" : 2
}
}
]
}
},
{
"key" : 2,
"doc_count" : 2,
"words" : {
"doc_count_error_upper_bound" : 0,
"sum_other_doc_count" : 0,
"buckets" : [
{
"key" : "thor",
"doc_count" : 2,
"word_count" : {
"value" : 2
}
}
]
}
}
]
}
}
您可以像下面这样为用户使用聚合和过滤器:
{
"size": 0,
"aggs": {
"words_stats": {
"filter": {
"terms": {
"user_id": [
"1",
"2"
]
}
},
"aggs": {
"words": {
"terms": {
"field": "word.keyword"
},
"aggs": {
"total_count": {
"sum": {
"field": "count"
}
}
}
}
}
}
}
}
结果将是:
{
"key" : "beer",
"doc_count" : 2,
"total_count" : {
"value" : 9.0
}
},
{
"key" : "thor",
"doc_count" : 2,
"total_count" : {
"value" : 5.0
}
},
{
"key" : "food",
"doc_count" : 1,
"total_count" : {
"value" : 2.0
}
},
{
"key" : "summer",
"doc_count" : 1,
"total_count" : {
"value" : 12.0
}
}
这是我必须做的:
我参考了@Rakesh Chandru 和@jaspreet chahal 的回答'并想出了这个。此查询处理 intersection
和 sorting
.
进程:
- 过滤 user_ids
- group_by(terms aggs) 关键字(示例中的单词),
- 通过聚合(总和)计数排序
{
size: 0, // because we do not want result of filtered records
query: {
terms: { user_id: user_ids } // filter by user_ids
},
aggs: {
group_by_keyword: {
terms: {
field: "keyword", // group by keyword
min_doc_count: 2, // where count >= 2
order: { agg_count: "desc" }, // order by count
size
},
aggs: {
agg_count: {
sum: {
field: "count" // aggregating count
}
}
}
}
}
}