flink 计数不同的问题

flink count distinct issue

现在我们使用翻滚 window 来计算不同的值。我们遇到的问题是,如果我们将翻滚 window 从一天延长到一个月,我们就无法获得现在的不同计数。这意味着如果我们将翻滚 window 设置为 1 个月,我们得到的数字是从每个月的第 1 天开始的。我现在如何获得当前的非重复计数(现在是 3 月 9 日)?

package flink.trigger;

import org.apache.flink.api.common.state.ReducingState;
import org.apache.flink.api.common.state.ReducingStateDescriptor;
import org.apache.flink.api.common.typeutils.base.LongSerializer;
import org.apache.flink.streaming.api.windowing.triggers.Trigger;
import org.apache.flink.streaming.api.windowing.triggers.TriggerResult;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;

import java.text.SimpleDateFormat;
import java.util.Date;

public class CustomCountDistinctTigger extends Trigger<Object, TimeWindow> {

    private final ReducingStateDescriptor<Long> timeState =
            new ReducingStateDescriptor<>("fire-interval", new DistinctCountAggregateFunction(), LongSerializer.INSTANCE);
    private long interval;


    public CustomCountDistinctTigger(long interval) {
        this.interval = interval;
    }

    @Override
    public TriggerResult onElement(Object element, long timestamp, TimeWindow window, TriggerContext ctx) throws Exception {
        ReducingState<Long> fireTimestamp = ctx.getPartitionedState(timeState);

        timestamp = ctx.getCurrentProcessingTime();

        if (fireTimestamp.get() == null) {
            long start = timestamp - (timestamp % interval);
            long nextFireTimestamp = start + interval;
            ctx.registerProcessingTimeTimer(nextFireTimestamp);
            fireTimestamp.add(nextFireTimestamp);
            return TriggerResult.CONTINUE;
        }
        return TriggerResult.CONTINUE;
    }

    @Override
    public TriggerResult onProcessingTime(long time, TimeWindow window, TriggerContext ctx) throws Exception {
//        System.out.println("onProcessingTime called at "+System.currentTimeMillis() );
//        return TriggerResult.FIRE_AND_PURGE;
        SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
        System.out.println(df.format(new Date()));
        //interval
        ReducingState<Long> fireTimestamp = ctx.getPartitionedState(timeState);

        if(window.maxTimestamp() == time) {
            return TriggerResult.FIRE_AND_PURGE;
        }
        else if (fireTimestamp.get().equals(time)) {
            fireTimestamp.clear();
            fireTimestamp.add(time + interval);
            ctx.registerProcessingTimeTimer(time + interval);
            return TriggerResult.FIRE;
        }
        return TriggerResult.CONTINUE;
    }

    @Override
    public TriggerResult onEventTime(long time, TimeWindow window, TriggerContext ctx) throws Exception {
        return TriggerResult.CONTINUE;
    }

    @Override
    public void clear(TimeWindow window, TriggerContext ctx) throws Exception {

    }

}


distinct count:
DataStreamSink<Tuple2<String, Integer>> finalResultStream = keyedStream
                            .flatMap(new KPIDistinctDataFlatMapFunction(inputSchema))
                            .map(new SwapMap())
                            .keyBy(new WordKeySelector())
                            .window(TumblingProcessingTimeWindows.of(org.apache.flink.streaming.api.windowing.time.Time.minutes(5)))
                            .trigger(new CustomCountDistinctTigger(1 * 60 * 6000))
                            .aggregate(new DistinctCountAggregateFunction())
                            .print("final print");

您可以定义一个自定义触发器 returns 每天触发一次以触发中间结果,然后在月底执行 FIRE_AND_PURGE 以关闭 window。

每次触发 returns FIRE 您的 window 都会通过调用 ProcessWindowFunctionprocess() 方法进行评估,此时它可以使用 Collector 即提供。 FIRE_AND_PURGE 最后一次评估 window,然后销毁它。

另请参阅此问题的答案 - - 其中涵盖了相关主题。