Julia - 相当于 Python lmfit
Julia - Equivalent of Python lmfit
我想使用最小二乘法 (Levenberg-Marquardt) 最小化函数 f
中的 x
和 y
。在 Python 中,我可以像下面这样使用 lmfit
params = lmfit.Parameters()
params.add('x', value=0, min=-np.pi, max=np.pi)
params.add('y', value=0.0, min=-0.25, max=0.25)
# Least square is the default method
x,y = lmfit.minimize(f, params)
有没有 equivalent/what 在 Julia 中实现此目的的最佳方法?
一定要 Levenberg-Marquardt 吗?如果没有,你可以使用 Optim.jl:
得到你想要的
using Optim
f(x) = x[1]^2 + x[2]^4
result = optimize(f, [1.0,2.0]) # minimum expected at (0,0)
x,y = result.minimizer # (2.3024075561537708e-5, -0.0009216015268974243)
lbounds = [1, -0.25]
ubounds = [2, 0.25]
result = optimize(f, lbounds, ubounds, [1.5,0.1]) # minimum expected at (1,0)
x,y = result.minimizer # (1.0000000000000002, -2.1978466115000986e-11)
上一个回答:
您也许可以使用包 LsqFit.jl:
using LsqFit
# function with two parameters
@. f(x, p) = p[1]*exp(-x*p[2])
# fake data
xdata = range(0, stop=10, length=20)
ydata = f(xdata, [1.0 2.0]) + 0.01*randn(length(xdata))
# upper and lower bounds + initial parameter guess
lb = [-π, -0.25]
ub = [π, 0.25]
p0 = [0.5, 0.1]
# least squares fit
fit_bounds = curve_fit(f, xdata, ydata, p0, lower=lb, upper=ub)
p1,p2 = fit_bounds.param
我想使用最小二乘法 (Levenberg-Marquardt) 最小化函数 f
中的 x
和 y
。在 Python 中,我可以像下面这样使用 lmfit
params = lmfit.Parameters()
params.add('x', value=0, min=-np.pi, max=np.pi)
params.add('y', value=0.0, min=-0.25, max=0.25)
# Least square is the default method
x,y = lmfit.minimize(f, params)
有没有 equivalent/what 在 Julia 中实现此目的的最佳方法?
一定要 Levenberg-Marquardt 吗?如果没有,你可以使用 Optim.jl:
得到你想要的using Optim
f(x) = x[1]^2 + x[2]^4
result = optimize(f, [1.0,2.0]) # minimum expected at (0,0)
x,y = result.minimizer # (2.3024075561537708e-5, -0.0009216015268974243)
lbounds = [1, -0.25]
ubounds = [2, 0.25]
result = optimize(f, lbounds, ubounds, [1.5,0.1]) # minimum expected at (1,0)
x,y = result.minimizer # (1.0000000000000002, -2.1978466115000986e-11)
上一个回答:
您也许可以使用包 LsqFit.jl:
using LsqFit
# function with two parameters
@. f(x, p) = p[1]*exp(-x*p[2])
# fake data
xdata = range(0, stop=10, length=20)
ydata = f(xdata, [1.0 2.0]) + 0.01*randn(length(xdata))
# upper and lower bounds + initial parameter guess
lb = [-π, -0.25]
ub = [π, 0.25]
p0 = [0.5, 0.1]
# least squares fit
fit_bounds = curve_fit(f, xdata, ydata, p0, lower=lb, upper=ub)
p1,p2 = fit_bounds.param