在 openCV 中检测圆圈

Detect circles in openCV

我在为 HoughCircles 函数选择正确的参数时遇到了问题。我尝试从视频中检测圆圈。这个圆圈是我做的,尺寸几乎一样。问题是相机在移动。

当我更改 maxRadius 时,它仍然以某种方式检测到更大的圆圈(见右图)。我也尝试更改 param1、param2 但仍然没有成功。

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
  blurred = cv2.medianBlur(gray, 25)#cv2.bilateralFilter(gray,10,50,50)


  minDist = 100
  param1 = 500
  param2 = 200#smaller value-> more false circles
  minRadius = 5
  maxRadius = 10
  circles = cv2.HoughCircles(blurred, cv2.HOUGH_GRADIENT, 1, minDist, param1, param2, minRadius, maxRadius)

  if circles is not None:
    circles = np.uint16(np.around(circles))
    for i in circles[0,:]:
        cv2.circle(blurred,(i[0], i[1]), i[2], (0, 255, 0), 2) 

也许我使用了错误的功能?

不必 fiddle 通过 cv2.HoughCircles 选择正确的参数,这里有一种使用轮廓过滤的替代方法。这个想法是获得具有Otsu's threshold then perform morphological operations to isolate elliptical shaped contours. Finally we find contours and filter using aspect ratio and contour area的二值图像。结果如下:

import cv2
import numpy as np

# Load image, grayscale, median blur, Otsus threshold
image = cv2.imread('1.png')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
blur = cv2.medianBlur(gray, 11)
thresh = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)[1]

# Morph open 
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5,5))
opening = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=3)

# Find contours and filter using contour area and aspect ratio
cnts = cv2.findContours(opening, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
for c in cnts:
    peri = cv2.arcLength(c, True)
    approx = cv2.approxPolyDP(c, 0.04 * peri, True)
    area = cv2.contourArea(c)
    if len(approx) > 5 and area > 1000 and area < 500000:
        ((x, y), r) = cv2.minEnclosingCircle(c)
        cv2.circle(image, (int(x), int(y)), int(r), (36, 255, 12), 2)

cv2.imshow('thresh', thresh)
cv2.imshow('opening', opening)
cv2.imshow('image', image)
cv2.waitKey()     

代码中的主要问题是 HoughCircles 函数的第 5 个参数。

根据documentation,参数列表是:

cv2.HoughCircles(image, method, dp, minDist[, circles[, param1[, param2[, minRadius[, maxRadius]]]]]) → circles

这意味着第 5 个参数适用 circles(它提供了一个通过引用获取输出的选项,而不是使用返回值)。

因为您没有传递 circles 参数,所以您必须在第 4 个参数之后为所有参数传递命名参数(例如 param1=param1param2=param2...)。

参数调整问题:

  • 减少 param1 的值。 param1 是传递给 Canny 的更高阈值。
    在您的情况下,值应该约为 30
  • 减少 param2 的值 文档不是很清楚,但是设置 50 左右的值是可行的。
  • 增加 maxRadius 值 - 半径 10 比您的圆的半径小得多。

这是代码:

import numpy as np
import cv2

img = cv2.imread('circles.png')

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

blurred = cv2.medianBlur(gray, 25) #cv2.bilateralFilter(gray,10,50,50)

minDist = 100
param1 = 30 #500
param2 = 50 #200 #smaller value-> more false circles
minRadius = 5
maxRadius = 100 #10

# docstring of HoughCircles: HoughCircles(image, method, dp, minDist[, circles[, param1[, param2[, minRadius[, maxRadius]]]]]) -> circles
circles = cv2.HoughCircles(blurred, cv2.HOUGH_GRADIENT, 1, minDist, param1=param1, param2=param2, minRadius=minRadius, maxRadius=maxRadius)

if circles is not None:
    circles = np.uint16(np.around(circles))
    for i in circles[0,:]:
        cv2.circle(img, (i[0], i[1]), i[2], (0, 255, 0), 2)

# Show result for testing:
cv2.imshow('img', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

结果: