分类算法的散点图
Plot scatter for classification algorithm
请帮我为这个分类算法创建散点图。在 y 中,我有一列标签(0、1),我想要两个标签的两种不同颜色的预测标签。
X = np.array(df.iloc[: , [0, 1,2,3,4,5,6,7,8,9,10,]].values)
y = df.iloc[: , 17].values
dtc = DecisionTreeClassifier()
train_x, test_x, train_y, test_y = train_test_split(X, y, train_size = 0.8, shuffle = True)
kf = KFold(n_splits = 5)
dtc=dtc.fit(train_x, train_y)
dtc_labels = dtc.predict(test_x)
我无权访问您的数据框,但假设我理解正确,这里是一个最低限度的工作示例。
重点是您必须在绘图期间为您的 numpy 数组使用逻辑索引。最后两行就是例证。
import numpy as np
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split, KFold
import matplotlib.pyplot as plt
X = np.zeros((100,2))
X[:,0] = np.array(list(range(100)))
X[:,1] = np.array(list(range(100)))
y = list([0] * 50 + [1] * 50)
dtc = DecisionTreeClassifier()
train_x, test_x, train_y, test_y = train_test_split(X, y, train_size = 0.8, shuffle = True)
kf = KFold(n_splits = 5)
dtc=dtc.fit(train_x, train_y)
dtc_labels = dtc.predict(test_x)
plt.scatter(test_x[dtc_labels == 0,0],test_x[dtc_labels == 0,1])
plt.scatter(test_x[dtc_labels == 1,0],test_x[dtc_labels == 1,1])
请帮我为这个分类算法创建散点图。在 y 中,我有一列标签(0、1),我想要两个标签的两种不同颜色的预测标签。
X = np.array(df.iloc[: , [0, 1,2,3,4,5,6,7,8,9,10,]].values)
y = df.iloc[: , 17].values
dtc = DecisionTreeClassifier()
train_x, test_x, train_y, test_y = train_test_split(X, y, train_size = 0.8, shuffle = True)
kf = KFold(n_splits = 5)
dtc=dtc.fit(train_x, train_y)
dtc_labels = dtc.predict(test_x)
我无权访问您的数据框,但假设我理解正确,这里是一个最低限度的工作示例。
重点是您必须在绘图期间为您的 numpy 数组使用逻辑索引。最后两行就是例证。
import numpy as np
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split, KFold
import matplotlib.pyplot as plt
X = np.zeros((100,2))
X[:,0] = np.array(list(range(100)))
X[:,1] = np.array(list(range(100)))
y = list([0] * 50 + [1] * 50)
dtc = DecisionTreeClassifier()
train_x, test_x, train_y, test_y = train_test_split(X, y, train_size = 0.8, shuffle = True)
kf = KFold(n_splits = 5)
dtc=dtc.fit(train_x, train_y)
dtc_labels = dtc.predict(test_x)
plt.scatter(test_x[dtc_labels == 0,0],test_x[dtc_labels == 0,1])
plt.scatter(test_x[dtc_labels == 1,0],test_x[dtc_labels == 1,1])