为什么我的 pandas 代码引发赋值警告并且 运行 缓慢?
Why does my pandas code raise assignment warnings and run slowly?
我正在做一个项目,我必须处理很多诊断。无论目的是什么,就编码而言,我认为下面的代码是正确的,但是它需要很多时间(~1h)并且它总是向我显示警告。有什么我做的不对吗?提前谢谢你
# The first 3 values are the only that matters
diagnoses_sec = df[['Diagnóstico 2', 'Diagnóstico 3', 'Diagnóstico 4', 'Diagnóstico 5', 'Diagnóstico 6',
'Diagnóstico 7', 'Diagnóstico 8', 'Diagnóstico 9', 'Diagnóstico 10', 'Diagnóstico 11', 'Diagnóstico 12',
'Diagnóstico 13', 'Diagnóstico 14', 'Diagnóstico 15', 'Diagnóstico 16', 'Diagnóstico 17', 'Diagnóstico 18',
'Diagnóstico 19', 'Diagnóstico 20']]
for i in range(0, diagnoses_sec.shape[1]):
diagnoses_sec.iloc[:,i].fillna("ZZZ", inplace = True)
diagnoses_sec.iloc[:,i] = diagnoses_sec.iloc[:,i].str.slice(start=0, stop=3, step=1)
在这部分,有一个警告,但我不明白为什么:
C:\Users\Asus\Anaconda3\lib\site-packages\pandas\core\indexing.py:630: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
self.obj[item_labels[indexer[info_axis]]] = value
代码的第二部分是:
from bisect import bisect_left
diag_icd10_ranges = ["B99","D49","D89","E89","F99","G99","H59","H95",
"I99","J99","K95", "L99", "M99", "N99","O9A","P96","Q99",
"R99","T88","Y99","Z99","ZZZ"]
diag_icd10_dict = {0: 'infectious_icd10d', 1: 'neoplasms_icd10d', 2: 'blood_icd10d', 3: 'endocrine_icd10d',
4: 'mental_icd10d', 5: 'nervous_icd10d', 6: 'eye_icd10d', 7: 'ear_icd10d',
8: 'circulatory_icd10d', 9: 'respiratory_icd10d', 10: 'digestive_icd10d', 11: 'skin_icd10d',
12: 'musculo_icd10d', 13: 'genitourinary_icd10d', 14: 'pregnancy_icd10d', 15: 'perinatalperiod_icd10d',
16: 'congenital_icd10d',
17: 'abnormalfindings_icd10d', 18:'injury_icd10d', 19:'morbidity', 20:'healthstatus', 21:'Nan_Category'}
# function to categorize every patient
def icdGroup(code): return bisect_left(diag_icd10_ranges,code)
# loop for the categorisation of every patient in every diagnose
for i_diag_sec in range(0,diagnoses_sec.shape[1]):
for i_within_diag_sec in range(0, len(diagnoses_sec)):
diagnoses_sec.iloc[i_within_diag_sec,i_diag_sec] = icdGroup(diagnoses_sec.iloc[i_within_diag_sec,i_diag_sec])
我再一次收到另一个警告:
C:\Users\Asus\Anaconda3\lib\site-packages\ipykernel_launcher.py:20: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
您收到这些 SettingWithCopyWarning
警告消息,因为 diagnoses_sec
是 df
的一部分的副本;在此副本上设置值会发出警告,以确保您了解这一点 - 您的更改不会传播回 df
。如果您明确使用 copy
方法进行复制,这些警告将消失,例如:
diagnoses_sec = df[['Diagnóstico 2', 'Diagnóstico 3']].copy()
关于执行代码所花费的时间,以这种方式迭代 pandas DataFrame
s 是低效的,您应该努力使用矢量化操作,将函数或操作应用于整个数组.
您可以修改您的第一个示例来执行此操作:
diagnoses_sec = df[['Diagnóstico 2', 'Diagnóstico 3', 'Diagnóstico 4', 'Diagnóstico 5', 'Diagnóstico 6',
'Diagnóstico 7', 'Diagnóstico 8', 'Diagnóstico 9', 'Diagnóstico 10', 'Diagnóstico 11', 'Diagnóstico 12',
'Diagnóstico 13', 'Diagnóstico 14', 'Diagnóstico 15', 'Diagnóstico 16', 'Diagnóstico 17', 'Diagnóstico 18',
'Diagnóstico 19', 'Diagnóstico 20']].copy()
diagnoses_sec.fillna("ZZZ", inplace=True)
diagnoses_sec = diagnoses_sec.apply(lambda x: x.str.slice(start=0, stop=3, step=1))
此处,fillna
应用于整个 DataFrame
,并将每个 NA
值替换为 "ZZZ"
。在第二个操作中,apply
将通过 lambda
函数对 diagnoses_sec
DataFrame
的每一列 (Series
) 执行字符串切片操作。
你的第二种情况类似,但是因为你的 icdGroup
函数没有向量化(它不在 DataFrame
或 Series
上运行)并且被应用于每个单元格您的 DataFrame
,您可以使用 applymap
对每个值执行它:
diagnoses_sec = diagnoses_sec.applymap(icdGroup)
我正在做一个项目,我必须处理很多诊断。无论目的是什么,就编码而言,我认为下面的代码是正确的,但是它需要很多时间(~1h)并且它总是向我显示警告。有什么我做的不对吗?提前谢谢你
# The first 3 values are the only that matters
diagnoses_sec = df[['Diagnóstico 2', 'Diagnóstico 3', 'Diagnóstico 4', 'Diagnóstico 5', 'Diagnóstico 6',
'Diagnóstico 7', 'Diagnóstico 8', 'Diagnóstico 9', 'Diagnóstico 10', 'Diagnóstico 11', 'Diagnóstico 12',
'Diagnóstico 13', 'Diagnóstico 14', 'Diagnóstico 15', 'Diagnóstico 16', 'Diagnóstico 17', 'Diagnóstico 18',
'Diagnóstico 19', 'Diagnóstico 20']]
for i in range(0, diagnoses_sec.shape[1]):
diagnoses_sec.iloc[:,i].fillna("ZZZ", inplace = True)
diagnoses_sec.iloc[:,i] = diagnoses_sec.iloc[:,i].str.slice(start=0, stop=3, step=1)
在这部分,有一个警告,但我不明白为什么:
C:\Users\Asus\Anaconda3\lib\site-packages\pandas\core\indexing.py:630: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
self.obj[item_labels[indexer[info_axis]]] = value
代码的第二部分是:
from bisect import bisect_left
diag_icd10_ranges = ["B99","D49","D89","E89","F99","G99","H59","H95",
"I99","J99","K95", "L99", "M99", "N99","O9A","P96","Q99",
"R99","T88","Y99","Z99","ZZZ"]
diag_icd10_dict = {0: 'infectious_icd10d', 1: 'neoplasms_icd10d', 2: 'blood_icd10d', 3: 'endocrine_icd10d',
4: 'mental_icd10d', 5: 'nervous_icd10d', 6: 'eye_icd10d', 7: 'ear_icd10d',
8: 'circulatory_icd10d', 9: 'respiratory_icd10d', 10: 'digestive_icd10d', 11: 'skin_icd10d',
12: 'musculo_icd10d', 13: 'genitourinary_icd10d', 14: 'pregnancy_icd10d', 15: 'perinatalperiod_icd10d',
16: 'congenital_icd10d',
17: 'abnormalfindings_icd10d', 18:'injury_icd10d', 19:'morbidity', 20:'healthstatus', 21:'Nan_Category'}
# function to categorize every patient
def icdGroup(code): return bisect_left(diag_icd10_ranges,code)
# loop for the categorisation of every patient in every diagnose
for i_diag_sec in range(0,diagnoses_sec.shape[1]):
for i_within_diag_sec in range(0, len(diagnoses_sec)):
diagnoses_sec.iloc[i_within_diag_sec,i_diag_sec] = icdGroup(diagnoses_sec.iloc[i_within_diag_sec,i_diag_sec])
我再一次收到另一个警告:
C:\Users\Asus\Anaconda3\lib\site-packages\ipykernel_launcher.py:20: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
您收到这些 SettingWithCopyWarning
警告消息,因为 diagnoses_sec
是 df
的一部分的副本;在此副本上设置值会发出警告,以确保您了解这一点 - 您的更改不会传播回 df
。如果您明确使用 copy
方法进行复制,这些警告将消失,例如:
diagnoses_sec = df[['Diagnóstico 2', 'Diagnóstico 3']].copy()
关于执行代码所花费的时间,以这种方式迭代 pandas DataFrame
s 是低效的,您应该努力使用矢量化操作,将函数或操作应用于整个数组.
您可以修改您的第一个示例来执行此操作:
diagnoses_sec = df[['Diagnóstico 2', 'Diagnóstico 3', 'Diagnóstico 4', 'Diagnóstico 5', 'Diagnóstico 6',
'Diagnóstico 7', 'Diagnóstico 8', 'Diagnóstico 9', 'Diagnóstico 10', 'Diagnóstico 11', 'Diagnóstico 12',
'Diagnóstico 13', 'Diagnóstico 14', 'Diagnóstico 15', 'Diagnóstico 16', 'Diagnóstico 17', 'Diagnóstico 18',
'Diagnóstico 19', 'Diagnóstico 20']].copy()
diagnoses_sec.fillna("ZZZ", inplace=True)
diagnoses_sec = diagnoses_sec.apply(lambda x: x.str.slice(start=0, stop=3, step=1))
此处,fillna
应用于整个 DataFrame
,并将每个 NA
值替换为 "ZZZ"
。在第二个操作中,apply
将通过 lambda
函数对 diagnoses_sec
DataFrame
的每一列 (Series
) 执行字符串切片操作。
你的第二种情况类似,但是因为你的 icdGroup
函数没有向量化(它不在 DataFrame
或 Series
上运行)并且被应用于每个单元格您的 DataFrame
,您可以使用 applymap
对每个值执行它:
diagnoses_sec = diagnoses_sec.applymap(icdGroup)