从 csv 文件计算行和列总计
Calculating row and column totals form csv files
我有以下关于家庭开支的 CSV 文件:
Family, Medical, Travel, Education
Smith, 346, 566, 45
Taylor, 56,837,848
我希望能够计算行总计和列总计。例如:
Smith = 346+566+45
Taylor = 56+837+848
Medical = 346+56
Travel = 566+837
Education = 45+848
到目前为止我有以下内容:
import csv
file = open('Family expenses.csv', newline='')
reader = csv.reader(file)
header = next(reader)
data = [row for row in header]
ndata = []
x = 0
for x in range(0, 3):
for i in data[x]:
i.split(',')
x += 1
ndata.append(i)
rdata = [int(s) if s.isdecimal() else s for s in ndata]
不需要pandas;使用 DictReader 使它变得简单:
import csv
file = open("Family expenses.csv", newline="")
reader = csv.DictReader(file, skipinitialspace=True)
results = {}
for row in reader:
results[row["Family"]] = 0 # initialize result for each family name
for key, value in row.items():
if key == "Family":
continue
if key not in results: # initialize result for each category
results[key] = 0
results[key] += float(value) # add value for category
results[row["Family"]] += float(value) # add value for family name
for key, result in results.items():
print(key, result)
我使用 skipinitialspace
因为你的 CSV 数据中有一些空格。
#Using a list in Python. Here you go
import csv
file = open('Family expenses.csv', newline='')
reader = csv.reader(file)
header = next(reader) #read first row & skip first row (header)
header.pop(0) #removing [0,0] first row first column for column wise sum heading
num_of_cols = len(header) #counting #columns
sum_col=[0,0,0] #a list for columnwise sum
j,temp=0,0
for row in reader:
sum_row,i = 0,0
print(row[0])
for i in range(1,len(row)):
sum_row+=int(row[i])
sum_col[i-1]=int(sum_col[i-1])+int(row[i])
print(sum_row)
print(header)
print(sum_col)`
我有以下关于家庭开支的 CSV 文件:
Family, Medical, Travel, Education
Smith, 346, 566, 45
Taylor, 56,837,848
我希望能够计算行总计和列总计。例如:
Smith = 346+566+45
Taylor = 56+837+848
Medical = 346+56
Travel = 566+837
Education = 45+848
到目前为止我有以下内容:
import csv
file = open('Family expenses.csv', newline='')
reader = csv.reader(file)
header = next(reader)
data = [row for row in header]
ndata = []
x = 0
for x in range(0, 3):
for i in data[x]:
i.split(',')
x += 1
ndata.append(i)
rdata = [int(s) if s.isdecimal() else s for s in ndata]
不需要pandas;使用 DictReader 使它变得简单:
import csv
file = open("Family expenses.csv", newline="")
reader = csv.DictReader(file, skipinitialspace=True)
results = {}
for row in reader:
results[row["Family"]] = 0 # initialize result for each family name
for key, value in row.items():
if key == "Family":
continue
if key not in results: # initialize result for each category
results[key] = 0
results[key] += float(value) # add value for category
results[row["Family"]] += float(value) # add value for family name
for key, result in results.items():
print(key, result)
我使用 skipinitialspace
因为你的 CSV 数据中有一些空格。
#Using a list in Python. Here you go
import csv
file = open('Family expenses.csv', newline='')
reader = csv.reader(file)
header = next(reader) #read first row & skip first row (header)
header.pop(0) #removing [0,0] first row first column for column wise sum heading
num_of_cols = len(header) #counting #columns
sum_col=[0,0,0] #a list for columnwise sum
j,temp=0,0
for row in reader:
sum_row,i = 0,0
print(row[0])
for i in range(1,len(row)):
sum_row+=int(row[i])
sum_col[i-1]=int(sum_col[i-1])+int(row[i])
print(sum_row)
print(header)
print(sum_col)`