在 RShiny 服务器调用中调用函数并将结果呈现为打印输出
Invoke function within RShiny server call and render result as print output
我编写了一个脚本,该脚本使用 2 个函数来计算 运行 测试所需的持续时间,例如功率分析。
输入和代码如下;
## RUN POWER CALCULATION
average_daily_traffic <- 3515/30
control <- 0.47
uplift <- 0.02
num_vars <- 2
sample_size_calculator <- function(control, uplift){
variant <- (uplift + 1) * control
baseline <- ES.h(control, variant)
sample_size_output <- pwr.p.test(h = baseline,
n = ,
sig.level = 0.05,
power = 0.8)
if(variant >= 0)
{return(sample_size_output)}
else
{paste("N/A")}
}
## RUN DAYS CALCULATOR FUNCTION
days_calculator <- function(sample_size_output, average_daily_traffic){
days_required <- c((sample_size_output)*num_vars)/(average_daily_traffic)
if(days_required >= 0)
{paste0("It will take ", round(days_required, digits = 0)*num_vars, " days for this test to reach significance, with a daily average of " , round(average_daily_traffic, digits = 0), " visitors to this page over a 30 day period.")}
else
{paste("N/A")}
}
## RUN FUNCTIONS AND OUTPUT ANSWER
sample_size_calculator <- sample_size_calculator(control, uplift)
sample_size_output <- sample_size_calculator$n
answer <- days_calculator(sample_size_output, average_daily_traffic)
answer
此代码性能良好,适合我在独立 R 脚本中的目的。
但是,我需要在 Shiny 应用程序中使这些功能可执行。我的尝试如下;
library(shiny)
ui <- fluidPage(
actionButton("exe", "Run",
style="color: #fff; background-color: #337ab7; border-color: #2e6da4"),
mainPanel(
textOutput("answer")
))
server <- function(input, output, session) {
sample_size_calculator <- eventReactive(input$exe,{
average_daily_traffic <- 3515/30
control <- 0.47
uplift <- 0.02
num_vars <- 2
variant <- (uplift + 1) * control
baseline <- ES.h(control, variant)
sample_size_output <- pwr.p.test(h = baseline,
n = ,
sig.level = 0.05,
power = 0.8)
if(variant >= 0)
{return(sample_size_output)}
else
{paste("N/A")}
})
days_calculator <- eventReactive (input$exe,{
days_required <- c((sample_size_output)*num_vars)/(average_daily_traffic)
if(days_required >= 0)
{paste0("It will take approximately ", round(days_required, digits = 0)*num_vars, " days or ", round((round(days_required, digits = 0)*num_vars)/365, digits = 1) ," years for this test to reach significance, based on a daily average of " , round(average_daily_traffic, digits = 0), " users to this page in the last 30 days.")}
else
{paste("N/A")}
})
outputs_ <- eventReactive( input$exe, {
req(sample_size_calculator())
req(days_calculator())
sample_size_calculator <- sample_size_calculator(control, uplift)
sample_size_output <- sample_size_calculator$n
answer <- days_calculator(sample_size_output, average_daily_traffic)
output$answer <- renderText(outputs_$answer)
})
}
shinyApp(ui = ui, server = server)
当我 运行 这段代码时,我看到了执行按钮,但没有显示任何输出。
这很可能是由于我对 Shiny 调用函数的理解有限,所以如果有更好的方法,我将不胜感激。
提前致谢。
* 编辑以包含完整功能代码 *
代码的 objective 是使用 Mark Edmonson 的 googleAnalyticsR 和 googleAuthR 来启用从 Google Analytics 帐户检索特定 URL/page 最近 30 天的网络访问数据和显示此数据的趋势。这工作正常,一旦用户输入 URL 并点击 'Run'。
还有一个额外的 GA 调用可以检索特定转化操作的额外数据(请参阅 other_data
)。这是为了推导稍后在功率计算中使用的转换率所必需的。
计算是cvr <- aeng$users/totalusers
#options(shiny.port = 1221)
## REQUIRED LIBS
library(shiny)
library(googleAnalyticsR)
library(plotly)
library(googleAuthR)
library(markdown)
library(pwr)
gar_set_client(scopes = c("https://www.googleapis.com/auth/analytics.readonly"))
daterange <- function(x) {
as.Date(format(x, "%Y-%m-01"))
}
## DATE PARAMETERS
date_start <- as.Date(Sys.Date(),format='%d-%B-%Y')-31
date_end <- as.Date(Sys.Date(),format='%d-%B-%Y')-1
date_range <- c(date_start, date_end)
## UI SECTION
ui <- fluidPage(
googleAuth_jsUI("auth"),
tags$head(
tags$link(rel = "stylesheet", type = "text/css", href = "dur_calc.css")
),
tags$br(),
sidebarLayout(
sidebarPanel(
code("To begin, select from 'Accounts' and enter URL of page to be tested:"),
tags$p(),
column(width = 12, authDropdownUI("auth_dropdown",
inColumns = FALSE)),
textInput("url", label = h5(strong("Page to be tested")), value = "Enter full page URL..."),
hr(),
fluidRow(column(3, verbatimTextOutput("value")
)
),
actionButton("exe", "Run Calculator",
style="color: #fff; background-color: #337ab7; border-color: #2e6da4"),
),
mainPanel(
plotlyOutput("trend_plot"),
textOutput("page"),
textOutput("answer")
)
)
)
## SERVER SECTION
server <- function(input, output, session) {
auth <- callModule(googleAuth_js, "auth")
## GET GA ACCOUNTS
ga_accounts <- reactive({
req(auth()
)
with_shiny(
ga_account_list,
shiny_access_token = auth()
)
})
view_id <- callModule(authDropdown, "auth_dropdown",
ga.table = ga_accounts)
ga_data <- eventReactive( input$exe, {
x <- input$url
#reactive expression
output$page <- renderText({
paste("You have selected the page:", input$url) })
filterPageurl <- dim_filter("dimension97" , "REGEX", x ,not = FALSE)
filts <- filter_clause_ga4(list( filterPageurl))
req(view_id())
req(date_range)
with_shiny(
google_analytics,
view_id(),
date_range = date_range,
dimensions = "date",
metrics = "users",
dim_filters = filts,
max = -1,
shiny_access_token = auth()
)
})
other_data <- eventReactive( input$exe, {
x <- input$url
filterPageurl <- dim_filter("dimension97" , "REGEX", x ,not = FALSE)
filts <- filter_clause_ga4(list( filterPageurl))
seg_id <- "gaid::uzKGvjpFS_Oa2IRh6m3ACg" #AEUs
seg_obj <- segment_ga4("AEUs", segment_id = seg_id)
req(view_id())
req(date_range)
#req(filts)
with_shiny(
google_analytics,
view_id(),
date_range = date_range,
dimensions = "date",
metrics = "users",
dim_filters = filts,
segments = seg_obj,
max = -1,
shiny_access_token = auth()
)
})
outputly <- eventReactive( input$exe, {
req(other_data())
req(ga_data())
aeng <- other_data()
ga_data <- ga_data()
totalusers <<- sum(ga_data$users)
cvr <- aeng$users/totalusers
average_daily_traffic <- totalusers/30
control <- cvr
uplift <- 0.02
num_vars <- 2
})
sample_size_calculator <- eventReactive(input$exe,{
variant <- (uplift + 1) * control
baseline <- ES.h(control, variant)
sample_size_output <- pwr.p.test(h = baseline,
n = ,
sig.level = 0.05,
power = 0.8)
if(variant >= 0)
{return(sample_size_output)}
else
{paste("N/A")}
})
days_calculator <- eventReactive (input$exe,{
days_required <- c((sample_size_output)*num_vars)/(average_daily_traffic)
if(days_required >= 0)
{paste0("It will take approximately ", round(days_required, digits = 0)*num_vars, " days or ", round((round(days_required, digits = 0)*num_vars)/365, digits = 1) ," years for this test to reach significance, based on a daily average of " , round(average_daily_traffic, digits = 0), " users to this page in the last 30 days.")}
else
{paste("N/A")}
})
output$trend_plot <- renderPlotly({
req(ga_data())
ga_data <- ga_data()
plot_ly(
x = ga_data$date,
y = ga_data$users,
type = 'scatter',
mode = 'lines') %>%
layout(title = "Page Visitors by Day (last 30 days)",
xaxis=list(title="Date", tickformat='%Y-%m-%d', showgrid=FALSE, showline=TRUE),
yaxis=list(title = "Users", showgrid=FALSE, showline=TRUE)
)
})
calc_answer <- eventReactive(input$exe, {
req(outputly)
outputly <- outputly()
sample_size_calculator <- sample_size_calculator()
sample_size_output <- sample_size_calculator$n
days_calculator(sample_size_output, average_daily_traffic)
})
output$answer <- renderText(calc_answer())
}
shinyApp(ui = ui, server = server)
一些可能有用的建议。
- 在添加所有计算之前会从一个简化的 shiny 应用程序开始,现在可能更容易使用
- 会避免将
output
语句放在 eventReactive
中。例如,请参见下文。
- 考虑只有一个
observeEvent
或 eventReactive
按钮按下而不是多个,特别是因为某些功能结果取决于其他功能。
- 目前没有输入,因此不需要额外的
reactive
表达式。但是,当您添加输入时,您可能会。
如果您还没有,请查看 Action Buttons and Reactivity 上的 R Studio Shiny 教程。
希望这对前进有所帮助。
library(shiny)
library(pwr)
ui <- fluidPage(
actionButton("exe", "Run", style="color: #fff; background-color: #337ab7; border-color: #2e6da4"),
mainPanel(
textOutput("answer")
)
)
server <- function(input, output, session) {
average_daily_traffic <- 3515/30
control <- 0.47
uplift <- 0.02
num_vars <- 2
sample_size_calculator <- function() {
variant <- (uplift + 1) * control
baseline <- ES.h(control, variant)
sample_size_output <- pwr.p.test(h = baseline,
n = ,
sig.level = 0.05,
power = 0.8)
if(variant >= 0)
{return(sample_size_output)}
else
{return(NA)}
}
days_calculator <- function (sample_size_output, average_daily_traffic) {
days_required <- c((sample_size_output)*num_vars)/(average_daily_traffic)
if(days_required >= 0)
{paste0("It will take approximately ", round(days_required, digits = 0)*num_vars, " days or ", round((round(days_required, digits = 0)*num_vars)/365, digits = 1) ," years for this test to reach significance, based on a daily average of " , round(average_daily_traffic, digits = 0), " users to this page in the last 30 days.")}
else
{paste("N/A")}
}
calc_answer <- eventReactive(input$exe, {
sample_size_calculator <- sample_size_calculator()
sample_size_output <- sample_size_calculator$n
days_calculator(sample_size_output, average_daily_traffic)
})
output$answer <- renderText(calc_answer())
}
shinyApp(ui = ui, server = server)
我编写了一个脚本,该脚本使用 2 个函数来计算 运行 测试所需的持续时间,例如功率分析。
输入和代码如下;
## RUN POWER CALCULATION
average_daily_traffic <- 3515/30
control <- 0.47
uplift <- 0.02
num_vars <- 2
sample_size_calculator <- function(control, uplift){
variant <- (uplift + 1) * control
baseline <- ES.h(control, variant)
sample_size_output <- pwr.p.test(h = baseline,
n = ,
sig.level = 0.05,
power = 0.8)
if(variant >= 0)
{return(sample_size_output)}
else
{paste("N/A")}
}
## RUN DAYS CALCULATOR FUNCTION
days_calculator <- function(sample_size_output, average_daily_traffic){
days_required <- c((sample_size_output)*num_vars)/(average_daily_traffic)
if(days_required >= 0)
{paste0("It will take ", round(days_required, digits = 0)*num_vars, " days for this test to reach significance, with a daily average of " , round(average_daily_traffic, digits = 0), " visitors to this page over a 30 day period.")}
else
{paste("N/A")}
}
## RUN FUNCTIONS AND OUTPUT ANSWER
sample_size_calculator <- sample_size_calculator(control, uplift)
sample_size_output <- sample_size_calculator$n
answer <- days_calculator(sample_size_output, average_daily_traffic)
answer
此代码性能良好,适合我在独立 R 脚本中的目的。
但是,我需要在 Shiny 应用程序中使这些功能可执行。我的尝试如下;
library(shiny)
ui <- fluidPage(
actionButton("exe", "Run",
style="color: #fff; background-color: #337ab7; border-color: #2e6da4"),
mainPanel(
textOutput("answer")
))
server <- function(input, output, session) {
sample_size_calculator <- eventReactive(input$exe,{
average_daily_traffic <- 3515/30
control <- 0.47
uplift <- 0.02
num_vars <- 2
variant <- (uplift + 1) * control
baseline <- ES.h(control, variant)
sample_size_output <- pwr.p.test(h = baseline,
n = ,
sig.level = 0.05,
power = 0.8)
if(variant >= 0)
{return(sample_size_output)}
else
{paste("N/A")}
})
days_calculator <- eventReactive (input$exe,{
days_required <- c((sample_size_output)*num_vars)/(average_daily_traffic)
if(days_required >= 0)
{paste0("It will take approximately ", round(days_required, digits = 0)*num_vars, " days or ", round((round(days_required, digits = 0)*num_vars)/365, digits = 1) ," years for this test to reach significance, based on a daily average of " , round(average_daily_traffic, digits = 0), " users to this page in the last 30 days.")}
else
{paste("N/A")}
})
outputs_ <- eventReactive( input$exe, {
req(sample_size_calculator())
req(days_calculator())
sample_size_calculator <- sample_size_calculator(control, uplift)
sample_size_output <- sample_size_calculator$n
answer <- days_calculator(sample_size_output, average_daily_traffic)
output$answer <- renderText(outputs_$answer)
})
}
shinyApp(ui = ui, server = server)
当我 运行 这段代码时,我看到了执行按钮,但没有显示任何输出。 这很可能是由于我对 Shiny 调用函数的理解有限,所以如果有更好的方法,我将不胜感激。
提前致谢。
* 编辑以包含完整功能代码 *
代码的 objective 是使用 Mark Edmonson 的 googleAnalyticsR 和 googleAuthR 来启用从 Google Analytics 帐户检索特定 URL/page 最近 30 天的网络访问数据和显示此数据的趋势。这工作正常,一旦用户输入 URL 并点击 'Run'。
还有一个额外的 GA 调用可以检索特定转化操作的额外数据(请参阅 other_data
)。这是为了推导稍后在功率计算中使用的转换率所必需的。
计算是cvr <- aeng$users/totalusers
#options(shiny.port = 1221)
## REQUIRED LIBS
library(shiny)
library(googleAnalyticsR)
library(plotly)
library(googleAuthR)
library(markdown)
library(pwr)
gar_set_client(scopes = c("https://www.googleapis.com/auth/analytics.readonly"))
daterange <- function(x) {
as.Date(format(x, "%Y-%m-01"))
}
## DATE PARAMETERS
date_start <- as.Date(Sys.Date(),format='%d-%B-%Y')-31
date_end <- as.Date(Sys.Date(),format='%d-%B-%Y')-1
date_range <- c(date_start, date_end)
## UI SECTION
ui <- fluidPage(
googleAuth_jsUI("auth"),
tags$head(
tags$link(rel = "stylesheet", type = "text/css", href = "dur_calc.css")
),
tags$br(),
sidebarLayout(
sidebarPanel(
code("To begin, select from 'Accounts' and enter URL of page to be tested:"),
tags$p(),
column(width = 12, authDropdownUI("auth_dropdown",
inColumns = FALSE)),
textInput("url", label = h5(strong("Page to be tested")), value = "Enter full page URL..."),
hr(),
fluidRow(column(3, verbatimTextOutput("value")
)
),
actionButton("exe", "Run Calculator",
style="color: #fff; background-color: #337ab7; border-color: #2e6da4"),
),
mainPanel(
plotlyOutput("trend_plot"),
textOutput("page"),
textOutput("answer")
)
)
)
## SERVER SECTION
server <- function(input, output, session) {
auth <- callModule(googleAuth_js, "auth")
## GET GA ACCOUNTS
ga_accounts <- reactive({
req(auth()
)
with_shiny(
ga_account_list,
shiny_access_token = auth()
)
})
view_id <- callModule(authDropdown, "auth_dropdown",
ga.table = ga_accounts)
ga_data <- eventReactive( input$exe, {
x <- input$url
#reactive expression
output$page <- renderText({
paste("You have selected the page:", input$url) })
filterPageurl <- dim_filter("dimension97" , "REGEX", x ,not = FALSE)
filts <- filter_clause_ga4(list( filterPageurl))
req(view_id())
req(date_range)
with_shiny(
google_analytics,
view_id(),
date_range = date_range,
dimensions = "date",
metrics = "users",
dim_filters = filts,
max = -1,
shiny_access_token = auth()
)
})
other_data <- eventReactive( input$exe, {
x <- input$url
filterPageurl <- dim_filter("dimension97" , "REGEX", x ,not = FALSE)
filts <- filter_clause_ga4(list( filterPageurl))
seg_id <- "gaid::uzKGvjpFS_Oa2IRh6m3ACg" #AEUs
seg_obj <- segment_ga4("AEUs", segment_id = seg_id)
req(view_id())
req(date_range)
#req(filts)
with_shiny(
google_analytics,
view_id(),
date_range = date_range,
dimensions = "date",
metrics = "users",
dim_filters = filts,
segments = seg_obj,
max = -1,
shiny_access_token = auth()
)
})
outputly <- eventReactive( input$exe, {
req(other_data())
req(ga_data())
aeng <- other_data()
ga_data <- ga_data()
totalusers <<- sum(ga_data$users)
cvr <- aeng$users/totalusers
average_daily_traffic <- totalusers/30
control <- cvr
uplift <- 0.02
num_vars <- 2
})
sample_size_calculator <- eventReactive(input$exe,{
variant <- (uplift + 1) * control
baseline <- ES.h(control, variant)
sample_size_output <- pwr.p.test(h = baseline,
n = ,
sig.level = 0.05,
power = 0.8)
if(variant >= 0)
{return(sample_size_output)}
else
{paste("N/A")}
})
days_calculator <- eventReactive (input$exe,{
days_required <- c((sample_size_output)*num_vars)/(average_daily_traffic)
if(days_required >= 0)
{paste0("It will take approximately ", round(days_required, digits = 0)*num_vars, " days or ", round((round(days_required, digits = 0)*num_vars)/365, digits = 1) ," years for this test to reach significance, based on a daily average of " , round(average_daily_traffic, digits = 0), " users to this page in the last 30 days.")}
else
{paste("N/A")}
})
output$trend_plot <- renderPlotly({
req(ga_data())
ga_data <- ga_data()
plot_ly(
x = ga_data$date,
y = ga_data$users,
type = 'scatter',
mode = 'lines') %>%
layout(title = "Page Visitors by Day (last 30 days)",
xaxis=list(title="Date", tickformat='%Y-%m-%d', showgrid=FALSE, showline=TRUE),
yaxis=list(title = "Users", showgrid=FALSE, showline=TRUE)
)
})
calc_answer <- eventReactive(input$exe, {
req(outputly)
outputly <- outputly()
sample_size_calculator <- sample_size_calculator()
sample_size_output <- sample_size_calculator$n
days_calculator(sample_size_output, average_daily_traffic)
})
output$answer <- renderText(calc_answer())
}
shinyApp(ui = ui, server = server)
一些可能有用的建议。
- 在添加所有计算之前会从一个简化的 shiny 应用程序开始,现在可能更容易使用
- 会避免将
output
语句放在eventReactive
中。例如,请参见下文。 - 考虑只有一个
observeEvent
或eventReactive
按钮按下而不是多个,特别是因为某些功能结果取决于其他功能。 - 目前没有输入,因此不需要额外的
reactive
表达式。但是,当您添加输入时,您可能会。
如果您还没有,请查看 Action Buttons and Reactivity 上的 R Studio Shiny 教程。
希望这对前进有所帮助。
library(shiny)
library(pwr)
ui <- fluidPage(
actionButton("exe", "Run", style="color: #fff; background-color: #337ab7; border-color: #2e6da4"),
mainPanel(
textOutput("answer")
)
)
server <- function(input, output, session) {
average_daily_traffic <- 3515/30
control <- 0.47
uplift <- 0.02
num_vars <- 2
sample_size_calculator <- function() {
variant <- (uplift + 1) * control
baseline <- ES.h(control, variant)
sample_size_output <- pwr.p.test(h = baseline,
n = ,
sig.level = 0.05,
power = 0.8)
if(variant >= 0)
{return(sample_size_output)}
else
{return(NA)}
}
days_calculator <- function (sample_size_output, average_daily_traffic) {
days_required <- c((sample_size_output)*num_vars)/(average_daily_traffic)
if(days_required >= 0)
{paste0("It will take approximately ", round(days_required, digits = 0)*num_vars, " days or ", round((round(days_required, digits = 0)*num_vars)/365, digits = 1) ," years for this test to reach significance, based on a daily average of " , round(average_daily_traffic, digits = 0), " users to this page in the last 30 days.")}
else
{paste("N/A")}
}
calc_answer <- eventReactive(input$exe, {
sample_size_calculator <- sample_size_calculator()
sample_size_output <- sample_size_calculator$n
days_calculator(sample_size_output, average_daily_traffic)
})
output$answer <- renderText(calc_answer())
}
shinyApp(ui = ui, server = server)