子图循环

Loop for subplot

这几天我一直在处理这个问题。我有一个按月获取信息的循环。我尝试将它们放在一个图中(子图 1 = 第 1 个月,子图 2 = 第 2 个月,依此类推),但是我在每个子图中都得到了最后一个月。我错过了什么?

我的代码是:

import warnings
import matplotlib.cbook
warnings.filterwarnings("ignore",category=matplotlib.cbook.mplDeprecation)

plt.figure(0)
for m in range(1,13):
  for i in range(4):
    for j in range(3):
      ax = plt.subplot2grid((4,3), (i,j))
      DF_sub = DF[DF['months'] == m]
      out = pd.cut(DF_sub['trip'], bins=[0, 0.25, 0.5, 0.75, 1], include_lowest=True)
      out_norm = out.value_counts(sort=False, normalize=True)
      ax = out_norm.plot.bar(rot=0, color="b", figsize=(6,4))
      plt.xticks([])
      plt.title('Month-' + str(m))
plt.show()

您遍历了几个月(1 到 12),但在每个月内,您再次遍历 i 和 j,这意味着您在重复一遍又一遍地策划某事。

你可以做的是从 0 到 11 迭代,定义月份和每次迭代中绘图的位置。首先是一些数据:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

np.random.seed(123)
DF = pd.DataFrame({"months":np.random.choice(np.arange(1,13),100),
                   "trip": np.random.uniform(size=100)
                  })

然后是定义的情节,很可能你不需要标签:

fig, axs = plt.subplots(4, 3)
fig.tight_layout()
months = np.arange(1,13)
labels= ['bin1','bin2','bin3','bin4']
bins = [0, 0.25, 0.5, 0.75, 1]
for m in range(len(months)):
    i = m % 4
    j = int(m/4)   
    DF_sub = DF[DF['months'] == months[m]]
    out = pd.cut(DF_sub['trip'], bins=bins,
    labels=labels,include_lowest=True)
    out_norm = out.value_counts(sort=False, normalize=True)
    ax = axs[i,j] 
    ax.bar(x=labels,height=np.array(out_norm))
    ax.title.set_text('Month-' + str(months[m]))
    ax.set_xticks([])
plt.show()

一个快速的替代方法是使用 seaborn:

import seaborn as sns
DF['bins'] = pd.cut(DF['trip'], bins=bins,labels=labels,include_lowest=True)
counts = pd.crosstab(DF.months,DF.bins,normalize='index')
counts = counts.unstack().reset_index().rename(columns={0:"value"})
g = sns.FacetGrid(counts, col="months",aspect=.7,col_wrap=3)
g.map(sns.barplot, "bins", "value")