使用 PyTorch 实现一个简单的 ResNet 块

Implementing a simple ResNet block with PyTorch

我正在尝试实现以下 ResNet 块,该 ResNet 由具有两个卷积层和一个跳跃连接的块组成。出于某种原因,它不会添加跳过连接的输出(如果应用)或输入到卷积层的输出。

ResNet 块具有:

我的代码:

class Block(nn.Module):
    def __init__(self, in_channels, out_channels, stride=1):
        """
        Args:
          in_channels (int):  Number of input channels.
          out_channels (int): Number of output channels.
          stride (int):       Controls the stride.
        """
        super(Block, self).__init__()

        self.skip = nn.Sequential()

        if stride != 1 or in_channels != out_channels:
          self.skip = nn.Sequential(
            nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=stride, bias=False),
            nn.BatchNorm2d(out_channels))
        else:
          self.skip = None

        self.block = nn.Sequential(
            nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=3, padding=1, stride=1, bias=False),
            nn.BatchNorm2d(out_channels),
            nn.ReLU(),
            nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=3, padding=1, stride=1, bias=False),
            nn.BatchNorm2d(out_channels))

    def forward(self, x):
        out = self.block(x)

        if self.skip is not None:
          out = self.skip(x)
        else:
          out = x

        out += x

        out = F.relu(out)
        return out

问题在于 out 变量的重用。通常,你会像 this:

def forward(self, x):
    identity = x
    out = self.block(x)

    if self.skip is not None:
        identity = self.skip(x)

    out += identity
    out = F.relu(out)

    return out

如果你喜欢"one-liners":

def forward(self, x):
    out = self.block(x)
    out += (x if self.skip is None else self.skip(x))
    out = F.relu(out)
    return out

如果你真的喜欢单行(拜托,那太多了,不要选择这个选项:))

def forward(self, x):
    return F.relu(self.block(x) + (x if self.skip is None else self.skip(x)))