Python/Pandas:如果值为 NaN 或 0,则用同一行中下一列的值填充
Python/Pandas: if value is NaN or 0 then fill with the value from the next column within the same row
我浏览了几篇文章,它们要么只适用于具有一列的示例,要么适用于只有 NaN 或 0 值的示例 - 但不能同时适用于两者。
我的 df 看起来像这样。我想用在它右边的四列中找到的非缺失或非零字符串填充列 'Main'。
当前 df =
import pandas as pd
d = {'Main': ['','','',''], 'col2': ['Big','','',0], 'col3': [0,'Medium',0,''], 'col4': ['','','Small',''], 'col5':['',0,'','Vsmall']}
df = pd.DataFrame(data=d)
+------+------+--------+-------+--------+
| Main | Col2 | Col3 | Col4 | Col5 |
+------+------+--------+-------+--------+
| | Big | 0 | ... | |
+------+------+--------+-------+--------+
| | ... | Medium | ... | 0 |
+------+------+--------+-------+--------+
| | | 0 | Small | |
+------+------+--------+-------+--------+
| | 0 | ... | ... | Vsmall |
+------+------+--------+-------+--------+
期望的输出 df
+--------+------+--------+-------+--------+
| Main | Col2 | Col3 | Col4 | Col5 |
+--------+------+--------+-------+--------+
| Big | Big | 0 | ... | |
+--------+------+--------+-------+--------+
| Medium | ... | Medium | ... | 0 |
+--------+------+--------+-------+--------+
| Small | | 0 | Small | |
+--------+------+--------+-------+--------+
| Vsmall | 0 | ... | ... | Vsmall |
+--------+------+--------+-------+--------+
提前致谢!
根据您提供的示例数据,我认为您想要实现的是解码单热编码数据(机器学习中将分类数据转换为数值数据的经典技术)。
这里是实现解码的代码:
import pandas as pd
d = {'Main': [0,0,0,0], 'col2': ['Big','','',0], 'col3': [0,'Medium',0,''], 'col4': ['','','Small',''], 'col5':['',0,'','Vsmall']}
df = pd.DataFrame(data=d)
def reduce_function(row):
for col in ['col2','col3','col4','col5']:
if not pd.isnull(row[col]) and row[col] != 0 and row[col] != '':
return row[col]
df['Main']=df.apply(reduce_function, axis=1)
注意:
始终考虑在数据帧上使用缩减(即 apply()
)而不是迭代行。
想法是将 0
和空字符串替换为 DataFrame.mask
缺失值,然后填充缺失的行和最后 select 第一列:
c = ['col2','col3','col4','col5']
df['Main'] = df[c].mask(df.isin(['0','',0])).bfill(axis=1).iloc[:, 0]
print (df)
Main col1 col2 col3
0 Big Big None
1 Medium 0 Medium None
2 Small 0 Small
如果可能,创建所有可能提取的字符串的列表,将所有其他值替换为 DataFrame.where
:
['col2','col3','col4','col5']
df['Main'] = df[c].where(df.isin(['Big','Medium','Small','Vsmall'])).bfill(axis=1).iloc[:,0]
print (df)
Main col1 col2 col3
0 Big Big None
1 Medium 0 Medium None
2 Small 0 Small
详情:
print (df[c].mask(df.isin(['0','',0])))
#print (df[c].where(df.isin(['Big','Medium','Small','Vsmall'])))
col1 col2 col3
0 Big None NaN
1 NaN Medium None
2 NaN NaN Small
print (df[c].mask(df.isin(['0','',0])).bfill(axis=1))
col1 col2 col3
0 Big NaN NaN
1 Medium Medium None
2 Small Small Small
我浏览了几篇文章,它们要么只适用于具有一列的示例,要么适用于只有 NaN 或 0 值的示例 - 但不能同时适用于两者。
我的 df 看起来像这样。我想用在它右边的四列中找到的非缺失或非零字符串填充列 'Main'。
当前 df =
import pandas as pd
d = {'Main': ['','','',''], 'col2': ['Big','','',0], 'col3': [0,'Medium',0,''], 'col4': ['','','Small',''], 'col5':['',0,'','Vsmall']}
df = pd.DataFrame(data=d)
+------+------+--------+-------+--------+
| Main | Col2 | Col3 | Col4 | Col5 |
+------+------+--------+-------+--------+
| | Big | 0 | ... | |
+------+------+--------+-------+--------+
| | ... | Medium | ... | 0 |
+------+------+--------+-------+--------+
| | | 0 | Small | |
+------+------+--------+-------+--------+
| | 0 | ... | ... | Vsmall |
+------+------+--------+-------+--------+
期望的输出 df
+--------+------+--------+-------+--------+
| Main | Col2 | Col3 | Col4 | Col5 |
+--------+------+--------+-------+--------+
| Big | Big | 0 | ... | |
+--------+------+--------+-------+--------+
| Medium | ... | Medium | ... | 0 |
+--------+------+--------+-------+--------+
| Small | | 0 | Small | |
+--------+------+--------+-------+--------+
| Vsmall | 0 | ... | ... | Vsmall |
+--------+------+--------+-------+--------+
提前致谢!
根据您提供的示例数据,我认为您想要实现的是解码单热编码数据(机器学习中将分类数据转换为数值数据的经典技术)。
这里是实现解码的代码:
import pandas as pd
d = {'Main': [0,0,0,0], 'col2': ['Big','','',0], 'col3': [0,'Medium',0,''], 'col4': ['','','Small',''], 'col5':['',0,'','Vsmall']}
df = pd.DataFrame(data=d)
def reduce_function(row):
for col in ['col2','col3','col4','col5']:
if not pd.isnull(row[col]) and row[col] != 0 and row[col] != '':
return row[col]
df['Main']=df.apply(reduce_function, axis=1)
注意:
始终考虑在数据帧上使用缩减(即 apply()
)而不是迭代行。
想法是将 0
和空字符串替换为 DataFrame.mask
缺失值,然后填充缺失的行和最后 select 第一列:
c = ['col2','col3','col4','col5']
df['Main'] = df[c].mask(df.isin(['0','',0])).bfill(axis=1).iloc[:, 0]
print (df)
Main col1 col2 col3
0 Big Big None
1 Medium 0 Medium None
2 Small 0 Small
如果可能,创建所有可能提取的字符串的列表,将所有其他值替换为 DataFrame.where
:
['col2','col3','col4','col5']
df['Main'] = df[c].where(df.isin(['Big','Medium','Small','Vsmall'])).bfill(axis=1).iloc[:,0]
print (df)
Main col1 col2 col3
0 Big Big None
1 Medium 0 Medium None
2 Small 0 Small
详情:
print (df[c].mask(df.isin(['0','',0])))
#print (df[c].where(df.isin(['Big','Medium','Small','Vsmall'])))
col1 col2 col3
0 Big None NaN
1 NaN Medium None
2 NaN NaN Small
print (df[c].mask(df.isin(['0','',0])).bfill(axis=1))
col1 col2 col3
0 Big NaN NaN
1 Medium Medium None
2 Small Small Small