如何使用Opencv等值线单向描述线点

How to use Opencv contours to describe line points in a unidirectional way

我正在使用 opencvs findContour 来查找点来描述由线(不是多边形)组成的图像,如下所示: cv::findContours(src, contours, hierarchy, cv::RETR_EXTERNAL, cv::CHAIN_APPROX_SIMPLE);

如果我没理解错的话,"cv2.connectedComponents" 方法给出了您要查找的内容。它为图像中的每个点分配一个标签,如果点连接,标签是相同的。通过执行此分配,不会发生重复。因此,如果您的线条是一个像素宽(例如边缘检测器或细化运算符的输出),则每个位置都会得到一个点。

编辑:

根据 OP 要求,线条应为 1 像素宽。为了实现这一点,在找到连接的组件之前应用了细化操作。步骤图像也已添加。

请注意,每个连接的分量点按y线的升序排列。

img_path = "D:/_temp/fig.png"
output_dir = 'D:/_temp/'

img = cv2.imread(img_path, cv2.IMREAD_GRAYSCALE)

_, img = cv2.threshold(img, 128, 255, cv2.THRESH_OTSU + cv2.THRESH_BINARY_INV)

total_white_pixels = cv2.countNonZero(img)
print ("Total White Pixels Before Thinning = ", total_white_pixels)

cv2.imwrite(output_dir + '1-thresholded.png', img)

#apply thinning -> each line is one-pixel wide
img = cv2.ximgproc.thinning(img)
cv2.imwrite(output_dir + '2-thinned.png', img)

total_white_pixels = cv2.countNonZero(img)
print ("Total White Pixels After Thinning = ", total_white_pixels)

no_ccs, labels = cv2.connectedComponents(img)

label_pnts_dic = {}

colored = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)

i = 1 # skip label 0 as it corresponds to the backgground points
sum_of_cc_points = 0 
while i < no_ccs:
    label_pnts_dic[i] = np.where(labels == i) #where return tuple(list of x cords, list of y cords)
    colored[label_pnts_dic[i]] = (random.randint(100, 255), random.randint(100, 255), random.randint(100, 255))
    i +=1

cv2.imwrite(output_dir + '3-colored.png', colored)    


print ("First ten points of label-1 cc: ")
for i in range(10):
    print ("x: ", label_pnts_dic[1][1][i], "y: ", label_pnts_dic[1][0][i])

输出:

Total White Pixels Before Thinning =  6814
Total White Pixels After Thinning =  2065
First ten points of label-1 cc: 
x:  312 y:  104
x:  313 y:  104
x:  314 y:  104
x:  315 y:  104
x:  316 y:  104
x:  317 y:  104
x:  318 y:  104
x:  319 y:  104
x:  320 y:  104
x:  321 y:  104

图片:

1.Thresholded

  1. 细化

  1. 彩色组件

编辑2:

在与 OP 讨论后,我明白只有一个(分散的)点列表是不够的。应该对点进行排序,以便可以对其进行跟踪。为实现该新逻辑,应在对图像应用细化后引入新逻辑。

  1. 查找极值点(具有单个 8-连通性邻居的点)
  2. 查找连接点(具有 3 向连接的点)
  3. 查找简单点(所有其他点)
  4. 从一个极值点开始追踪,直到到达另一个极值点或连接器。
  5. 提取行进路径。
  6. 检查连接点是否已经变成简单点并更新其状态。
  7. 重复
  8. 检查是否存在未从任何极值点到达的简单点的闭环,将每个闭环提取为附加路点。

extreme/connector/simple点分类代码

def filter_neighbors(ns):    
    i = 0
    while i < len(ns):
        j = i + 1
        while j < len(ns):
            if (ns[i][0] == ns[j][0] and abs(ns[i][1] - ns[j][1]) <= 1) or (ns[i][1] == ns[j][1] and abs(ns[i][0] - ns[j][0]) <= 1):
                del ns[j]
                break                                    
            j += 1
        i += 1    

def sort_points_types(pnts):
    extremes = []
    connections = []
    simple = []

    for i in range(pnts.shape[0]):
        neighbors = []
        for j in range (pnts.shape[0]):
            if i == j: continue
            if abs(pnts[i, 0] - pnts[j, 0]) <= 1 and abs(pnts[i, 1] - pnts[j, 1]) <= 1:#8-connectivity check
                neighbors.append(pnts[j])
        filter_neighbors(neighbors)
        if len(neighbors) == 1:
            extremes.append(pnts[i])
        elif len(neighbors) == 2:
            simple.append(pnts[i])
        elif len(neighbors) > 2:
            connections.append(pnts[i])
    return extremes, connections, simple


img_path = "D:/_temp/fig.png"
output_dir = 'D:/_temp/'

img = cv2.imread(img_path, cv2.IMREAD_GRAYSCALE)

_, img = cv2.threshold(img, 128, 255, cv2.THRESH_OTSU + cv2.THRESH_BINARY_INV)
img = cv2.ximgproc.thinning(img)

pnts = cv2.findNonZero(img)
pnts = np.squeeze(pnts)


ext, conn, simple = sort_points_types(pnts)

for p in conn:
    cv2.circle(img, (p[0], p[1]), 5, 128)

for p in ext:
    cv2.circle(img, (p[0], p[1]), 5, 128)

cv2.imwrite(output_dir + "6-both.png", img)

print (len(ext), len(conn), len(simple))

编辑3:

通过以类似内核的方式检查邻居,在一次通过中对点进行分类的实现更加有效,这要归功于

注意:在调用此方法之前,图像应填充一个像素以避免边界检查或相当于在边界处涂黑像素。

def sort_points_types(pnts, img):
    extremes = []
    connections = []
    simple = []

    for p in pnts:
        x = p[0]
        y = p[1]
        n = []
        if img[y - 1,x] > 0: n.append((y-1, x))
        if img[y - 1,x - 1] > 0: n.append((y-1, x - 1))
        if img[y - 1,x + 1] > 0: n.append((y-1, x + 1))
        if img[y,x - 1] > 0: n.append((y, x - 1))
        if img[y,x + 1] > 0: n.append((y, x + 1))
        if img[y + 1,x] > 0: n.append((y+1, x))
        if img[y + 1,x - 1] > 0: n.append((y+1, x - 1))
        if img[y + 1,x + 1] > 0: n.append((y+1, x + 1))
        filter_neighbors(n)
        if len(n) == 1:
            extremes.append(p)
        elif len(n) == 2:
            simple.append(p)
        elif len(n) > 2:
            connections.append(p)
    return extremes, connections, simple

一幅可视化极点和连接点的图像: