如何计算 ADC 读数的平均值?

How can the average of the ADC Readings be calculated?

目的是将最新的 10 个 ADC 读数存储在一个数组中,然后计算它们的平均值以用于其他地方。每次更新时删除最旧的。

关于 LED 时序,如果 ADC 读数在如下所写的边界内,则必须将时序从 1 秒切换到 0.25 秒,如何正确实现?我知道我的方法有效,但可以做得更好。 至于 LED,如果按下开关,它们必须改变模式,正如您所见,它们会这样做,但我再次确定可以通过另一种更简单的方式完成!

下面是我的代码,而且肯定有很多错误和优化空间,我会欣然接受!

#include <avr/io.h>
#define F_CPU 16000000UL
#include <util/delay.h>

#include <avr/io.h>
#include <avr/interrupt.h>
unsigned int timecount0;


unsigned int adc_reading;

volatile uint32_t timing = 1;
volatile uint32_t accumulator = 0;
volatile uint16_t average = 0;
volatile uint16_t samples = 0;


#define LED_RED PORTB = ((PORTB & ~0b00001110)|(0b00000010 & 0b00001110))
#define LED_GREEN PORTB = ((PORTB & ~0b00001110)|(0b00001000 & 0b00001110))
#define LED_BLUE PORTB = ((PORTB & ~0b00001110)|(0b00000100 & 0b00001110))
#define LED_RGB PORTB = ((PORTB & ~0b00001110)|(0b00001000 & 0b00001110))

#define DELAY_COUNT 6

volatile uint8_t portdhistory = 0xFF;


void Timer0_init(void)
{
    timecount0 = 0; // Initialize the overflow count. Note its scope
    TCCR0B = (5<<CS00); // Set T0 Source = Clock (16MHz)/1024 and put Timer in Normal mode

    TCCR0A = 0;         // Not strictly necessary as these are the reset states but it's good
    // practice to show what you're doing
    TCNT0 = 61;         // Recall: 256-61 = 195 & 195*64us = 12.48ms, approx 12.5ms
    TIMSK0 = (1<<TOIE0);    // Enable Timer 0 interrupt


    PCICR |= (1<<PCIE0);
    PCMSK0 |= (1<<PCINT0);
    sei();              // Global interrupt enable (I=1)

}


void ADC_init(void)
{
    ADMUX = ((1<<REFS0) | (0<<ADLAR) | (0<<MUX0));  /* AVCC selected for VREF,ADLAR set to 0, ADC0 as ADC input (A0)  */
    ADCSRA = ((1<<ADEN)|(1<<ADSC)|(1<<ADATE)|(1<<ADIE)|(7<<ADPS0));
                                        /* Enable ADC, Start Conversion, Auto Trigger enabled, 
                                           Interrupt enabled, Prescale = 32  */
    ADCSRB = (0<<ADTS0); /* Select AutoTrigger Source to Free Running Mode 
                            Strictly speaking - this is already 0, so we could omit the write to
                            ADCSRB, but included here so the intent is clear */
    sei(); //global interrupt enable
}


int main(void)
{
    ADC_init();
    Timer0_init();


    DDRD = 0b00100000;  /* set PORTD bit 5 to output  */
    DDRB = 0b00111110;  /* set PORTB bit 1,2,3,4,5 to output  */


    sei();              // Global interrupt enable (I=1)


    while(1)
    {
        if(!(PIND & (1<<PIND2)))
        {
            PORTD = PORTD |= (1<<PORTD5);
            PORTB = PORTB |= (1<<PORTB4);
            if(average>512)
            {
                PORTB = PORTB |= (1<<PORTB5);
            }

        }
        else
        {

            PORTD = PORTD &= ~(1<<PORTD5);
            PORTB = PORTB &= ~(1<<PORTB4);
        }




    }

}

ISR(TIMER0_OVF_vect)
{

        TCNT0 = 61;     //TCNT0 needs to be set to the start point each time
        ++timecount0;   // count the number of times the interrupt has been reached


        if(!(PIND & (1<<PIND3)))
        {           

        if (timecount0 >= 0)    // 40 * 12.5ms = 500ms
        {
            PORTB = ((PORTB & ~0b00001110)|(0b00000000 & 0b00001110));
        }

        if (timecount0 >= 8*timing) 
        {
            LED_RED;
        }

        if (timecount0 >= 16*timing)    
        {
            LED_GREEN;
        }

        if (timecount0 >= 24*timing)    
        {
            PORTB = ((PORTB & ~0b00001110)|(0b00000110 & 0b00001110));


        }
        if (timecount0 >= 32*timing)    
        {
            PORTB = ((PORTB & ~0b00001110)|(0b00001000 & 0b00001110));


        }
        if (timecount0 >= 40*timing)    
        {
            PORTB = ((PORTB & ~0b00001110)|(0b00001010 & 0b00001110));          

        }

        if (timecount0 >= 48*timing)    
        {
            PORTB = ((PORTB & ~0b00001110)|(0b00001100 & 0b00001110));      



        }

        if (timecount0 >= 56*timing)    
        {
            PORTB = ((PORTB & ~0b00001110)|(0b00001110 & 0b00001110));  


        }

        if (timecount0 >= 64*timing)
        {

            timecount0 = 0;

        }

        }
        else
        {
            if (timecount0 >= 0)
            {

                PORTB = ((PORTB & ~0b00001110)|(0b00000000 & 0b00001110)); //ALL OFF
            }

            if (timecount0 >= 8*timing) 
            {
                LED_RED;
                //PORTB = ((PORTB & ~0b00001110)|(0b00000010 & 0b00001110)); //RED
            }

            if (timecount0 >= 16*timing)    
            {
                LED_GREEN;


            }

            if (timecount0 >= 24*timing)    
            {
                LED_BLUE;



            }
            if (timecount0 >= 32*timing)
            {

                timecount0 = 0;

            }
        }           

}

ISR (ADC_vect)  //handles ADC interrupts

{

    adc_reading = ADC;   //ADC is in Free Running Mode
    accumulator+= adc_reading;


    if ((adc_reading > 768) & (adc_reading <= 1024))
    {
        timing = 10;

    }

    if ((adc_reading >= 0) & (adc_reading<= 768) )
    {
        timing = 2.5;

    }


    samples++;

    if(samples == 10)
    {
        average = accumulator/10;
        accumulator = 0;
        samples = 0;
    }


}




根据您的处理器,您可能会保持 ISR() 快速并避免昂贵 /,%

LED 的东西,我会在定时器中断中处理。

#define N 10
volatile unsigned sample[N];
volatile unsigned count = 0;
volatile unsigned index = 0;
volatile unsigned sum = 0;

ISR (ADC_vect)  {
  if (count >= N) {
    sum -= sample[index];
  } else {
    count++;
  }
  sample[index] = ADC;
  sum += sample[index];
  index++;
  if (index >= N) {
    index = 0;
  }
}

unsigned ADC_GetAvg(void) {
  block_interrupts();
  unsigned s = sum;
  unsigned n = count;
  restore_interrupts();
  if (n == 0) {
    return 0; //ADC ISR never called
  }
  return (s + n/2)/n;  // return rounded average
}

我推荐 low pass filter 的整数版本,而不是最后一个 N 的平均值。

关于移动平均 w/ N = 10,chux - Reinstate Monica 提供了解决方案。 Chux - Reinstate Monica 还建议查看低通滤波器的整数版本。我个人喜欢指数加权移动平均线 (EWMA),因为它的编码相当简单,并且只需要几个值即可进行平均。这与在您的情况下必须在数组中保留 10 相比。为此,我会推荐 Elliot Williams 的 Make:AVR Programming Chapter 12。如果您无法轻松访问它,EWMA,如 Make AVR 中所述,以

开头

y_current = (1/16)*x_current + (15/16)*y_previous

在我们的例子中,y_current 是更新后的 EWMA 值,x_current 是 ADC 的最新样本,y_previous 是最后一个 EWMA 值。 16 的选择也可以随权重 1 和 15 一起更改。不过,保持它的 2 的幂很重要,正如您将看到的那样。如 Elliot Williams 书中所示,您乘以 16 并补偿舍入问题并得到以下结果,

16*y_current = x_current + 16*y_previous - (16*y_previous - 8)/16.

现在,我知道这看起来很难看,但我们得到的是 16 个整数的平均值,并且仅依赖于整数加法(16*y_previous 存储为一个值,因此您不需要做乘法)和位移;这就是为什么在 EWMA 中选择 2 的幂,除以 16 与右移 4 相同。好的,那么这个平均值在代码中是什么样子的:

// Snippet from Make: AVR Programming
uint16_t x_current; // ADC value.
uint16_t y_current; // Average ADC value.
// Get the EWMA.
y_current = x_current + y_current - ((y_current - 8) >> 4);
// Send the value over USART (assuming it's wired up). Remember that
// y_current is scaled by 16.
printf("%d\n",(y_current>>4)); 

以上只是您可以在您的代码中使用的 EWMA 以及发送它的示例,这只是提醒您该值是否已缩放。请记住,这只是平均 ADC 值。您可能希望将 ADC 值用作函数的输入以获取某些测量量的值。您可以创建一个查找表 table,而不是实际使用函数和计算值,其中索引是 ADC 值,该索引处的数组条目是预先计算的值。

就您的其他代码而言,可能 corrected/streamlined 的内容在您的 ISR 中。在 ISR(TIMER0_OVF_vect) 中,你有一些常量的位操作,可以预先计算,这样你就不会在每次 ISR(TIMER0_OVF_vect) 触发时都这样做。

PORTB = ((PORTB & ~0b00001110)|(0b00000000 & 0b00001110));

变成

PORTB = ((PORTB & 0b11110001)|(0b00000000)); // Saves a bit inversion and '&'

这表明您的 ORing | 不会影响结果,因为您是针对全零进行 ORing。

最后,在您的 ISR (ADC_vect) 中,您使用的是按位 &,而不是逻辑与 &&。您会得到相同的结果,但这就像用扳手敲钉子一样。我知道这很多,但我希望它能有所帮助,如果您需要澄清,请告诉我。