如何证明 2 是 Idris 中的素数?

How to prove that 2 is Prime in Idris?

我现在是 Idris 的初学者,所以我想寻求帮助。 我有除法的定义:

data DividesNat : (a : Nat) -> (b : Nat) -> Type where
    Div : (k ** (k * x = y)) -> DividesNat y x

和素数的定义,基于 DividesNat:

data Prime : (p : Nat) -> Type where
    ConsPrime : LTE 2 p ->
        ((d : Nat) -> DividesNat p d -> Either (d = 1) (d = p)) ->
        Prime p

现在我要证明2是质数:

prf2IsPrime : Prime (S (S Z))
prf2IsPrime = ConsPrime (LTESucc (LTESucc LTEZero)) prf
    where
        prf : (d : Nat) -> DividesNat (S (S Z)) d ->
            Either (d = 1) (d = (S (S Z)))
        prf d x = ?prf_rhs

d = (S Z) 或 d = (S (S Z)) 的情况非常简单:

prf : (d : Nat) -> DividesNat (S (S Z)) d ->
            Either (d = 1) (d = (S (S Z)))
        prf Z (Div (x ** pf)) = ?prf_rhs2_3
        prf (S Z) (Div (x ** pf)) = Left Refl
        prf (S (S Z)) (Div (x ** pf)) = Right Refl
        prf (S (S (S _))) (Div (x ** pf)) = ?rr_2

但我不知道如何证明 d = Zd = (S (S (S _)))。我怎样才能证明这些情况是不可能的?

终于找到了解决办法:

prf2IsPrime : Prime (S (S Z))
prf2IsPrime = ConsPrime (LTESucc (LTESucc LTEZero)) prf
    where
        prfGT32 : (S (S (S a))) `GT` (S (S Z))
        prfGT32 = LTESucc (LTESucc (LTESucc LTEZero))

        prf : (d : Nat) -> DividesNat (S (S Z)) d -> Either (d = 1) (d = (S (S Z)))
        prf Z (Div (x ** pf)) = absurd (zeroIsNotDiv (x ** pf))
        prf (S Z) (Div (x ** pf)) = Left Refl
        prf (S (S Z)) (Div (x ** pf)) = Right Refl
        prf (S (S (S _))) (Div (k ** pf)) =
            absurd (gtIsNotDiv prfGT32 (k ** pf))