如何在训练中替换损失函数tensorflow.keras

How to replace loss function during training tensorflow.keras

我想在训练期间替换与我的神经网络相关的损失函数,这是网络:

model = tensorflow.keras.models.Sequential()
        model.add(tensorflow.keras.layers.Conv2D(32, kernel_size=(3, 3), activation="relu", input_shape=input_shape))
        model.add(tensorflow.keras.layers.Conv2D(64, (3, 3), activation="relu"))
        model.add(tensorflow.keras.layers.MaxPooling2D(pool_size=(2, 2)))
        model.add(tensorflow.keras.layers.Dropout(0.25))
        model.add(tensorflow.keras.layers.Flatten())
        model.add(tensorflow.keras.layers.Dense(128, activation="relu"))
        model.add(tensorflow.keras.layers.Dropout(0.5))
        model.add(tensorflow.keras.layers.Dense(output_classes, activation="softmax"))
        model.compile(loss=tensorflow.keras.losses.categorical_crossentropy, optimizer=tensorflow.keras.optimizers.Adam(0.001), metrics=['accuracy'])
        history = model.fit(x_train, y_train, batch_size=128, epochs=5, validation_data=(x_test, y_test))

所以现在我想把 tensorflow.keras.losses.categorical_crossentropy 换成另一个,所以我做了这个:

model.compile(loss=tensorflow.keras.losses.mse, optimizer=tensorflow.keras.optimizers.Adam(0.001), metrics=['accuracy'])
    history = model.fit(x_improve, y_improve, epochs=1, validation_data=(x_test, y_test)) #FIXME bug during training

但是我有这个错误:

ValueError: No gradients provided for any variable: ['conv2d/kernel:0', 'conv2d/bias:0', 'conv2d_1/kernel:0', 'conv2d_1/bias:0', 'dense/kernel:0', 'dense/bias:0', 'dense_1/kernel:0', 'dense_1/bias:0'].

为什么?我该如何解决?还有其他改变损失函数的方法吗?

谢谢

所以,我直接给出的答案是:如果你想玩这种游戏,就切换到pytorch。因为在 pytorch 中你定义了你的训练和评估函数,所以只需要一个 if 语句就可以从一个损失函数切换到另一个损失函数。

另外,我在你的代码中看到你想从cross_entropy切换到mean_square_error,前者适合分类后者适合回归,所以这不是你能做的,在接下来的代码中我从均方误差切换到均方对数误差,这两种损失都适合回归。

尽管其他答案为您的问题提供了解决方案(请参阅 change-loss-function-dynamically-during-training),但尚不清楚您是否可以信任这些结果。有人发现,即使使用自定义函数,Keras 有时也会在第一次损失时继续训练。

解决方案:

我的解决方案基于 train_on_batch,它允许我们在 for 循环中训练模型,因此只要我们希望使用新的损失函数重新编译模型就停止训练。请注意,重新编译模型不会重置权重(参见:Does recompiling a model re-initialize the weights?)。

可以在此处找到数据集Boston housing dataset

# Regression Example With Boston Dataset: Standardized and Larger
from pandas import read_csv
from keras.models import Sequential
from keras.layers import Dense
from sklearn.model_selection import train_test_split
from keras.losses import mean_squared_error, mean_squared_logarithmic_error
from matplotlib import pyplot
import matplotlib.pyplot as plt

# load dataset
dataframe = read_csv("housing.csv", delim_whitespace=True, header=None)
dataset = dataframe.values

# split into input (X) and output (Y) variables
X = dataset[:,0:13]
y = dataset[:,13]

trainX, testX, trainy, testy = train_test_split(X, y, test_size=0.33, random_state=42)

# create model
model = Sequential()
model.add(Dense(13, input_dim=13, kernel_initializer='normal', activation='relu'))
model.add(Dense(6, kernel_initializer='normal', activation='relu'))
model.add(Dense(1, kernel_initializer='normal'))

batch_size = 25

# have to define manually a dict to store all epochs scores 
history = {}
history['history'] = {}
history['history']['loss'] = []
history['history']['mean_squared_error'] = []
history['history']['mean_squared_logarithmic_error'] = []
history['history']['val_loss'] = []
history['history']['val_mean_squared_error'] = []
history['history']['val_mean_squared_logarithmic_error'] = []

# first compiling with mse
model.compile(loss='mean_squared_error', optimizer='adam', metrics=[mean_squared_error, mean_squared_logarithmic_error])

# define number of iterations in training and test
train_iter = round(trainX.shape[0]/batch_size)
test_iter = round(testX.shape[0]/batch_size)

for epoch in range(2):
    
    # train iterations 
    loss, mse, msle = 0, 0, 0
    for i in range(train_iter):
        
        start = i*batch_size
        end = i*batch_size + batch_size
        batchX = trainX[start:end,]
        batchy = trainy[start:end,]
        
        loss_, mse_, msle_ = model.train_on_batch(batchX,batchy)
                
        loss += loss_
        mse += mse_
        msle += msle_
    
    history['history']['loss'].append(loss/train_iter)
    history['history']['mean_squared_error'].append(mse/train_iter)
    history['history']['mean_squared_logarithmic_error'].append(msle/train_iter)
    
    # test iterations 
    val_loss, val_mse, val_msle = 0, 0, 0
    for i in range(test_iter):
        
        start = i*batch_size
        end = i*batch_size + batch_size
        batchX = testX[start:end,]
        batchy = testy[start:end,]
        
        val_loss_, val_mse_, val_msle_ = model.test_on_batch(batchX,batchy)
        
        val_loss += val_loss_
        val_mse += val_mse_
        val_msle += msle_
        
    history['history']['val_loss'].append(val_loss/test_iter)
    history['history']['val_mean_squared_error'].append(val_mse/test_iter)
    history['history']['val_mean_squared_logarithmic_error'].append(val_msle/test_iter)
    
# recompiling the model with new loss
model.compile(loss='mean_squared_logarithmic_error', optimizer='adam', metrics=[mean_squared_error, mean_squared_logarithmic_error])

for epoch in range(2):
    
    # train iterations 
    loss, mse, msle = 0, 0, 0
    for i in range(train_iter):
        
        start = i*batch_size
        end = i*batch_size + batch_size
        batchX = trainX[start:end,]
        batchy = trainy[start:end,]
    
        loss_, mse_, msle_ = model.train_on_batch(batchX,batchy)
        
        loss += loss_
        mse += mse_
        msle += msle_
        
    history['history']['loss'].append(loss/train_iter)
    history['history']['mean_squared_error'].append(mse/train_iter)
    history['history']['mean_squared_logarithmic_error'].append(msle/train_iter)
     
    # test iterations 
    val_loss, val_mse, val_msle = 0, 0, 0
    for i in range(test_iter):
        
        start = i*batch_size
        end = i*batch_size + batch_size
        batchX = testX[start:end,]
        batchy = testy[start:end,]
        
        val_loss_, val_mse_, val_msle_ = model.test_on_batch(batchX,batchy)
        
        val_loss += val_loss_
        val_mse += val_mse_
        val_msle += msle_
        
    history['history']['val_loss'].append(val_loss/test_iter)
    history['history']['val_mean_squared_error'].append(val_mse/test_iter)
    history['history']['val_mean_squared_logarithmic_error'].append(val_msle/test_iter)
    
# Some plots to check what is going on   
# loss function 
pyplot.subplot(311)
pyplot.title('Loss')
pyplot.plot(history['history']['loss'], label='train')
pyplot.plot(history['history']['val_loss'], label='test')
pyplot.legend()

# Only mean squared error 
pyplot.subplot(312)
pyplot.title('Mean Squared Error')
pyplot.plot(history['history']['mean_squared_error'], label='train')
pyplot.plot(history['history']['val_mean_squared_error'], label='test')
pyplot.legend()

# Only mean squared logarithmic error 
pyplot.subplot(313)
pyplot.title('Mean Squared Logarithmic Error')
pyplot.plot(history['history']['mean_squared_logarithmic_error'], label='train')
pyplot.plot(history['history']['val_mean_squared_logarithmic_error'], label='test')
pyplot.legend()
plt.tight_layout()
pyplot.show()

结果图确认损失函数在第二个时期后发生变化:

损失函数的下降是由于模型从正常均方误差切换到对数误差,后者的值要低得多。打印分数也证明used loss真的变了:

print(history['history']['loss'])
[599.5209197998047, 570.4041115897043, 3.8622902120862688, 2.1578191178185597]
print(history['history']['mean_squared_error'])
[599.5209197998047, 570.4041115897043, 510.29034205845426, 425.32058388846264]
print(history['history']['mean_squared_logarithmic_error'])
[8.624503476279122, 6.346359729766846, 3.8622902120862688, 2.1578191178185597]

在前两个时期,损失值等于mean_square_error,在第三个和第四个时期,价值变得等于mean_square_logarithmic_error,这是新的损失那是设定的。所以似乎使用 train_on_batch 允许改变损失函数,不过我想再次强调这基本上是人们应该在 pytoch 上做的以获得相同的结果,不同之处在于 pytorch 的行为(在这个场景,在我看来)更可靠。

我目前正在 google 使用 Tensorflow 和 Keras 进行协作,我无法重新编译一个保持权重的模型,每次我重新编译这样的模型时:

with strategy.scope():
  model = hd_unet_model(INPUT_SIZE)
  model.compile(optimizer=Adam(lr=0.01), 
                loss=tf.keras.losses.MeanSquaredError() ,
                metrics=[tf.keras.metrics.MeanSquaredError()]) 

权重被重置。 所以我找到了其他解决方案,您需要做的就是:

  1. 获取具有所需权重的模型(加载它或其他)
  2. 像这样获取模型的权重:
weights = model.get_weights()
  1. 重新编译模型(改变损失函数)
  2. 重新设置重新编译模型的权重,如下所示:
model.set_weights(weights)
  1. 启动训练

我测试了这个方法,它似乎有效。

所以要改变损失 mid-Training 你可以:

  1. 用第一个损失编译。
  2. 第一个损失的火车。
  3. 保存权重。
  4. 第二次丢失重新编译
  5. 加载权重。
  6. 训练第二次损失。