使用 Eigen 库在 C++ 中计算多项式的根
Calculating roots of polynom in C++ with Eigen library
如何使用 Eigen 库在 C++ 中获取带系数的多项式的根?
在Python中:
>>> import numpy as np
>>> coeff = [0.708563939215852, -0.3111717537041549, -0.2151830138973625]
>>> np.roots(coeff)
array([ 0.81279407, -0.37363574])
在 Matlab 中:
>> coeff = [0.708563939215852, -0.3111717537041549, -0.2151830138973625]
>> roots(coeff)
ans =
0.812794068532020
-0.373635742116877
我在 C++ 中尝试使用 Eigen 库,但收到不同的结果:
#include <unsupported/Eigen/Polynomials>
Eigen::Vector3d coeff(0.708563939215852, -0.3111717537041549, -0.2151830138973625);
Eigen::PolynomialSolver<double, Eigen::Dynamic> solver;
solver.compute(coeff);
const Eigen::PolynomialSolver<double, Eigen::Dynamic>::RootsType &r = solver.roots();
--> r[2] = {{1.2303239390096565, 0.000}, {-2.6764034787849331, 0.000}}
感谢@rafix07 的评论,下面的代码给出了与 NumPy 和 MATLAB 中相同的结果。必须交换系数的顺序。
#include <unsupported/Eigen/Polynomials>
Eigen::Vector3d coeff(-0.2151830138973625, -0.3111717537041549, 0.708563939215852);
Eigen::PolynomialSolver<double, Eigen::Dynamic> solver;
solver.compute(coeff);
const Eigen::PolynomialSolver<double, Eigen::Dynamic>::RootsType &r = solver.roots();
如何使用 Eigen 库在 C++ 中获取带系数的多项式的根?
在Python中:
>>> import numpy as np
>>> coeff = [0.708563939215852, -0.3111717537041549, -0.2151830138973625]
>>> np.roots(coeff)
array([ 0.81279407, -0.37363574])
在 Matlab 中:
>> coeff = [0.708563939215852, -0.3111717537041549, -0.2151830138973625]
>> roots(coeff)
ans =
0.812794068532020
-0.373635742116877
我在 C++ 中尝试使用 Eigen 库,但收到不同的结果:
#include <unsupported/Eigen/Polynomials>
Eigen::Vector3d coeff(0.708563939215852, -0.3111717537041549, -0.2151830138973625);
Eigen::PolynomialSolver<double, Eigen::Dynamic> solver;
solver.compute(coeff);
const Eigen::PolynomialSolver<double, Eigen::Dynamic>::RootsType &r = solver.roots();
--> r[2] = {{1.2303239390096565, 0.000}, {-2.6764034787849331, 0.000}}
感谢@rafix07 的评论,下面的代码给出了与 NumPy 和 MATLAB 中相同的结果。必须交换系数的顺序。
#include <unsupported/Eigen/Polynomials>
Eigen::Vector3d coeff(-0.2151830138973625, -0.3111717537041549, 0.708563939215852);
Eigen::PolynomialSolver<double, Eigen::Dynamic> solver;
solver.compute(coeff);
const Eigen::PolynomialSolver<double, Eigen::Dynamic>::RootsType &r = solver.roots();