Python sklearn- gaussian.mixture 如何在每个集群中获得 samples/points
Python sklearn- gaussian.mixture how to get the samples/points in each clusters
我正在使用 GMM 将我的数据集聚类到 K 组,我的模型很好 运行,但是无法从每个聚类中获取原始数据,你们能给我一些解决方案吗这个问题。非常感谢。
您可以这样做(查看 d0、d1 和 d2)。
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from pandas import DataFrame
from sklearn import datasets
from sklearn.mixture import GaussianMixture
# load the iris dataset
iris = datasets.load_iris()
# select first two columns
X = iris.data[:, 0:2]
# turn it into a dataframe
d = pd.DataFrame(X)
# plot the data
plt.scatter(d[0], d[1])
gmm = GaussianMixture(n_components = 3)
# Fit the GMM model for the dataset
# which expresses the dataset as a
# mixture of 3 Gaussian Distribution
gmm.fit(d)
# Assign a label to each sample
labels = gmm.predict(d)
d['labels']= labels
d0 = d[d['labels']== 0]
d1 = d[d['labels']== 1]
d2 = d[d['labels']== 2]
# here is a possible solution for you:
d0
d1
d2
# plot three clusters in same plot
plt.scatter(d0[0], d0[1], c ='r')
plt.scatter(d1[0], d1[1], c ='yellow')
plt.scatter(d2[0], d2[1], c ='g')
# print the converged log-likelihood value
print(gmm.lower_bound_)
# print the number of iterations needed
# for the log-likelihood value to converge
print(gmm.n_iter_)
# it needed 8 iterations for the log-likelihood to converge.
我正在使用 GMM 将我的数据集聚类到 K 组,我的模型很好 运行,但是无法从每个聚类中获取原始数据,你们能给我一些解决方案吗这个问题。非常感谢。
您可以这样做(查看 d0、d1 和 d2)。
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from pandas import DataFrame
from sklearn import datasets
from sklearn.mixture import GaussianMixture
# load the iris dataset
iris = datasets.load_iris()
# select first two columns
X = iris.data[:, 0:2]
# turn it into a dataframe
d = pd.DataFrame(X)
# plot the data
plt.scatter(d[0], d[1])
gmm = GaussianMixture(n_components = 3)
# Fit the GMM model for the dataset
# which expresses the dataset as a
# mixture of 3 Gaussian Distribution
gmm.fit(d)
# Assign a label to each sample
labels = gmm.predict(d)
d['labels']= labels
d0 = d[d['labels']== 0]
d1 = d[d['labels']== 1]
d2 = d[d['labels']== 2]
# here is a possible solution for you:
d0
d1
d2
# plot three clusters in same plot
plt.scatter(d0[0], d0[1], c ='r')
plt.scatter(d1[0], d1[1], c ='yellow')
plt.scatter(d2[0], d2[1], c ='g')
# print the converged log-likelihood value
print(gmm.lower_bound_)
# print the number of iterations needed
# for the log-likelihood value to converge
print(gmm.n_iter_)
# it needed 8 iterations for the log-likelihood to converge.