MLflow Kubernetes Pod 部署

MLflow Kubernetes Pod Deployment

我正在尝试创建一个 kubernetes pod,它将 运行 MLflow 跟踪器将 mlflow 工件存储在指定的 s3 位置。以下是我尝试使用

部署的内容

Docker 文件:

FROM python:3.7.0

RUN pip install mlflow==1.0.0
RUN pip install boto3
RUN pip install awscli --upgrade --user

ENV AWS_MLFLOW_BUCKET aws_mlflow_bucket
ENV AWS_ACCESS_KEY_ID aws_access_key_id
ENV AWS_SECRET_ACCESS_KEY aws_secret_access_key

COPY run.sh /

ENTRYPOINT ["/run.sh"]

# docker build -t seedjeffwan/mlflow-tracking-server:1.0.0 .
# 1.0.0 is current mlflow version

run.sh:

#!/bin/sh

set -e

if [ -z $FILE_DIR ]; then
  echo >&2 "FILE_DIR must be set"
  exit 1
fi

if [ -z $AWS_MLFLOW_BUCKET ]; then
  echo >&2 "AWS_MLFLOW_BUCKET must be set"
  exit 1
fi

if [ -z $AWS_ACCESS_KEY_ID ]; then
  echo >&2 "AWS_ACCESS_KEY_ID must be set"
  exit 1
fi

if [ -z $AWS_SECRET_ACCESS_KEY ]; then
  echo >&2 "AWS_SECRET_ACCESS_KEY must be set"
  exit 1
fi

mkdir -p $FILE_DIR && mlflow server \
    --backend-store-uri $FILE_DIR \
    --default-artifact-root s3://${AWS_MLFLOW_BUCKET} \
    --host 0.0.0.0 \
    --port 5000

mlflow.yaml:

---
apiVersion: apps/v1
kind: Deployment
metadata:
  name: mlflow-tracking-server
  namespace: default
spec:
  selector:
    matchLabels:
      app: mlflow-tracking-server
  replicas: 1
  template:
    metadata:
      labels:
        app: mlflow-tracking-server
    spec:
      containers:
      - name: mlflow-tracking-server
        image: seedim/mlflow-tracker-service:v1
        ports:
        - containerPort: 5000
        env:
        # FILE_DIR can not be mount dir, MLFLOW need a empty dir but mount dir has lost+found
        - name: FILE_DIR
          value: /mnt/mlflow/manifest
        - name: AWS_MLFLOW_BUCKET
          value: <aws_s3_bucket>
        - name: AWS_ACCESS_KEY_ID
          valueFrom:
            secretKeyRef:
              name: aws-secret
              key: AWS_ACCESS_KEY_ID
        - name: AWS_SECRET_ACCESS_KEY
          valueFrom:
            secretKeyRef:
              name: aws-secret
              key: AWS_SECRET_ACCESS_KEY
        volumeMounts:
        - mountPath: /mnt/mlflow
          name: mlflow-manifest-storage
      volumes:
        - name: mlflow-manifest-storage
          persistentVolumeClaim:
            claimName: mlflow-manifest-pvc

---
apiVersion: v1
kind: Service
metadata:
  name: mlflow-tracking-server
  namespace: default
  labels:
    app: mlflow-tracking-server
spec:
  ports:
  - port: 5000
    protocol: TCP
  selector:
    app: mlflow-tracking-server

---
kind: PersistentVolumeClaim
apiVersion: v1
metadata:
  name: mlflow-manifest-pvc
  namespace: default
spec:
  storageClassName: gp2
  accessModes:
    - ReadWriteOnce
  resources:
    requests:
      storage: 2Gi

然后我正在构建 docker 图像,将其保存到 minikube 环境,然后尝试 运行 kubernetes pod 上的 docker 图像。

当我尝试此操作时,图像 pod 出现 CrashLoopBackOff 错误,使用 yaml 创建的 pod 出现 'pod has unbound immediate PersistentVolumeClaims'。

我正在尝试关注此处的信息 (https://github.com/aws-samples/eks-kubeflow-workshop/blob/master/notebooks/07_Experiment_Tracking/07_02_MLFlow.ipynb)。

在这种情况下,我做错了什么吗?

谢谢

此处的问题与您的 minikube 集群未配置的持久卷声明有关。

您将需要决定切换到平台管理的 kubernetes 服务或坚持使用 minikube 并手动满足持久卷声明或 有替代解决方案。

最简单的选择是使用 helm charts for mflow installation like this or this

第一个头盔 chart 已列出要求:

Prerequisites

  • Kubernetes cluster 1.10+
  • Helm 2.8.0+
  • PV provisioner support in the underlying infrastructure.

就像指南中的一样您遵循这一篇需要 PV provisioner 支持。

因此,通过切换到 EKS,您很可能会更轻松地部署带有 s3 工件存储的 mflow。

如果您希望继续使用 minikube,您将需要修改您链接的指南中的 helm chart 值或 yaml 文件,以与您手动配置 PV 兼容。它可能还需要 s3 的权限配置。

第二个头盔chart有以下limitation/feature:

Known limitations of this Chart

I've created this Chart to use it in a production-ready environment in my company. We are using MLFlow with a Postgres backend store.

Therefore, the following capabilities have been left out of the Chart:

  • Using persistent volumes as a backend store.
  • Using other database engines like MySQL or SQLServer.

您可以尝试安装在minikube上。此设置将导致工件存储在远程数据库中。它仍然需要调整才能连接到 s3。

不管怎么说,minikube 仍然是一个轻量级的 kubernetes 发行版,主要用于学习,所以如果你坚持太久,你最终会达到另一个限制。

希望对您有所帮助。