带有 GEKKO 的轨迹规划器无法处理给定的目标速度

Trajectory Planner with GEKKO is not able to handle given goal velocities

我已经为带有 GEKKO 的车辆设置了轨迹规划器,所以基本上我使用了非线性的运动学单轨模型。 一切正常,直到我到达部分,当我给出不等于 0 的目标速度时。我可以毫无问题地给出所有其他目标状态(x 位置、y 位置、转向角和偏航角),但是如果我给出目标速度,优化器将退出并显示以下代码:

Converged to a point of local infeasibility. Problem may be infeasible.

我也试过初始状态和目标状态的组合,应该是完全可行的,例如

startstate = [0.0, 0.0, 0.0, 0.0, 0.0]
finalstate = [10.0, 0.0, 0.0, 2.0, 0.0]

但我还是遇到了同样的问题

有没有人知道是什么导致了这个问题?

下面给出了可执行代码,在此先感谢!!

# Imports
import numpy as np
from gekko import GEKKO
import matplotlib.pyplot as plt

m = GEKKO() # initialize the model

# Set the constants
lwb = 2.471 # wheelbase of vehicle 3
amax = 11.5 # maximum acceleration of vehicle 3
mindelta = -1.023 # minimum steering angle
maxdelta = 1.023 # maximum steering angle
mindeltav = -0.4 # minimum steering velocity
maxdeltav = 0.4 # maximum steering velocity
minv = -11.2 # minimum velocity
maxv = 41.7 #maximum velocity

lwba = m.Const(value=lwb)
amaxa = m.Const(value=amax)
mindeltaa = m.Const(value=mindelta)
maxdeltaa = m.Const(value=maxdelta)
mindeltava = m.Const(value=mindeltav)
maxdeltava = m.Const(value=maxdeltav)
minva = m.Const(value=minv)
maxva = m.Const(value=maxv)

# Set time
startt = 0.0 # select start time of the simulation
endt = 10.0 # select end time of the simulation
dt = 100 # select discretization of the simulation
m.time = np.linspace(startt, endt, dt) # set the time (from start to endt in dt steps)
finalt = int(dt*endt/(endt-startt))-1 # compute the discretization step belonging to the goalt

# Set initial and final state
startstate = [1.0, 1.0, -0.2, 1.0, -0.3] # [sx, sy, delta, v, psi]
finalstate = [10.0, 8.0, 0.3, 0.0, 2.0] # [sx, sy, delta, v, psi]

# Create the state variables
# x1 = sx (position in x-direction)
# x2 = sy (position in y-direction)
# x3 = delta (steering angle)
# x4 = v (velocity in x-direction)
# x5 = psi (heading)

sxa = m.SV(value=startstate[0])
sya = m.SV(value=startstate[1])
deltaa = m.SV(value=startstate[2], lb=mindeltaa, ub=maxdeltaa)
va = m.SV(value=startstate[3], lb=minva, ub=maxva)
psia = m.SV(value=startstate[4])

# Create the input variables
# u1 = vdelta (velocity of steering angle)
# u2 = longa (longitudinal acceleration)

vdeltaa = m.CV(value=0, lb=mindeltava, ub=maxdeltava)
longaa = m.CV(value=0)

# Define the state space model
# differential equations
m.Equation(sxa.dt() == va * m.cos(psia))
m.Equation(sya.dt() == va * m.sin(psia))
m.Equation(deltaa.dt() == vdeltaa)
m.Equation(va.dt() == longaa)
m.Equation(psia.dt() == (va/lwba)*m.tan(deltaa))

# Add constraint
# Friction circle
m.Equation(m.sqrt(longaa**2+(va*psia.dt())**2) <= amax)

# Add Objectives
m.Obj(1*vdeltaa**2) # minimize steering velocity
m.Obj(1*longaa**2) # minimize longitudinal acceleration

# Fix the final values
m.fix(sxa, pos = finalt, val=finalstate[0])
m.fix(sya, pos = finalt, val=finalstate[1])
m.fix(deltaa, pos = finalt, val=finalstate[2])
m.fix(va, pos = finalt, val=finalstate[3])
m.fix(psia, pos = finalt, val=finalstate[4])

# Solve
m.options.IMODE = 6 # MPC
m.solve()

# Plot trajectory
plt.plot(sxa.value, sya.value)
plt.axis('equal')
plt.title('Trajectory')
plt.show()

# Plot state variables
plt.figure()
plt.suptitle('State Variables', fontsize=16)
# plot steering angle
plt.subplot(131)
plt.title('Steering Angle/Delta')
plt.plot(m.time, deltaa.value)
# plot velocity
plt.subplot(132)
plt.title('Velocity')
plt.plot(m.time, va.value)
# plot yaw angle
plt.subplot(133)
plt.title('Orientation/Psi')
plt.plot(m.time, psia.value)
plt.subplots_adjust(wspace=0.5)
plt.show()

# plot input
plt.figure()
plt.suptitle('Input', fontsize=16)
plt.subplot(121)
plt.title('Velocity of Steering Angle/v delta')
plt.plot(m.time, vdeltaa.value)
plt.subplot(122)
plt.title('Longitudinal Acceleration/long a')
plt.subplots_adjust(wspace=0.5)
plt.plot(m.time, longaa.value)
plt.show()

问题是,当您在末尾指定状态变量时,它还会将微分值设置为零。一种也可以提高收敛性能的解决方法是在最终约束中进行更改:

# Fix the final values
#m.fix(sxa, pos = finalt, val=finalstate[0])
#m.fix(sya, pos = finalt, val=finalstate[1])
#m.fix(deltaa, pos = finalt, val=finalstate[2])
#m.fix(va, pos = finalt, val=finalstate[3])
#m.fix(psia, pos = finalt, val=finalstate[4])

p = np.zeros(len(m.time))
p[finalt] = 1000
final = m.Param(p)
m.Minimize(final*(sxa-finalstate[0])**2)
m.Minimize(final*(sya-finalstate[1])**2)
m.Minimize(final*(deltaa-finalstate[2])**2)
m.Minimize(final*(va-finalstate[3])**2)
m.Minimize(final*(psia-finalstate[4])**2)

这有助于求解器更快地收敛并通过最小化与最终条件的偏差而不是将它们作为硬约束包括在内来避免不可行性。这种方法的缺点是它有时会与其他目标发生冲突。

这是以前不可行的简单案例的完整代码:

# Imports
import numpy as np
from gekko import GEKKO
import matplotlib.pyplot as plt

m = GEKKO() # initialize the model

# Set the constants
lwb = 2.471 # wheelbase of vehicle 3
amax = 11.5 # maximum acceleration of vehicle 3
mindelta = -1.023 # minimum steering angle
maxdelta = 1.023 # maximum steering angle
mindeltav = -0.4 # minimum steering velocity
maxdeltav = 0.4 # maximum steering velocity
minv = -11.2 # minimum velocity
maxv = 41.7 #maximum velocity

lwba = m.Const(value=lwb)
amaxa = m.Const(value=amax)
mindeltaa = m.Const(value=mindelta)
maxdeltaa = m.Const(value=maxdelta)
mindeltava = m.Const(value=mindeltav)
maxdeltava = m.Const(value=maxdeltav)
minva = m.Const(value=minv)
maxva = m.Const(value=maxv)

# Set time
startt = 0.0 # select start time of the simulation
endt = 10.0 # select end time of the simulation
dt = 100 # select discretization of the simulation
m.time = np.linspace(startt, endt, dt) # set the time (from start to endt in dt steps)
finalt = int(dt*endt/(endt-startt))-1 # compute the discretization step belonging to the goalt

# Set initial and final state
startstate = [0.0, 0.0, 0.0, 0.0, 0.0]
finalstate = [10.0, 0.0, 0.0, 2.0, 0.0]
#startstate = [1.0, 1.0, -0.2, 1.0, -0.3] # [sx, sy, delta, v, psi]
#finalstate = [10.0, 8.0, 0.3, 0.0, 2.0] # [sx, sy, delta, v, psi]

# Create the state variables
# x1 = sx (position in x-direction)
# x2 = sy (position in y-direction)
# x3 = delta (steering angle)
# x4 = v (velocity in x-direction)
# x5 = psi (heading)

sxa = m.SV(value=startstate[0])
sya = m.SV(value=startstate[1])
deltaa = m.SV(value=startstate[2], lb=mindeltaa, ub=maxdeltaa)
va = m.SV(value=startstate[3], lb=minva, ub=maxva)
psia = m.SV(value=startstate[4])

# Create the input variables
# u1 = vdelta (velocity of steering angle)
# u2 = longa (longitudinal acceleration)

vdeltaa = m.CV(value=0, lb=mindeltava, ub=maxdeltava)
longaa = m.CV(value=0)

# Define the state space model
# differential equations
m.Equation(sxa.dt() == va * m.cos(psia))
m.Equation(sya.dt() == va * m.sin(psia))
m.Equation(deltaa.dt() == vdeltaa)
m.Equation(va.dt() == longaa)
m.Equation(psia.dt() == (va/lwba)*m.tan(deltaa))

# Add constraint
# Friction circle
m.Equation(m.sqrt(longaa**2+(va*psia.dt())**2) <= amax)

# Add Objectives
m.Obj(1*vdeltaa**2) # minimize steering velocity
m.Obj(1*longaa**2) # minimize longitudinal acceleration

# Fix the final values
#m.fix(sxa, pos = finalt, val=finalstate[0])
#m.fix(sya, pos = finalt, val=finalstate[1])
#m.fix(deltaa, pos = finalt, val=finalstate[2])
#m.fix(va, pos = finalt, val=finalstate[3])
#m.fix(psia, pos = finalt, val=finalstate[4])

p = np.zeros(len(m.time))
p[finalt] = 1000
final = m.Param(p)
m.Minimize(final*(sxa-finalstate[0])**2)
m.Minimize(final*(sya-finalstate[1])**2)
m.Minimize(final*(deltaa-finalstate[2])**2)
m.Minimize(final*(va-finalstate[3])**2)
m.Minimize(final*(psia-finalstate[4])**2)

# Solve
m.options.IMODE = 6 # MPC
m.solve()

# Plot trajectory
plt.figure()
plt.plot(sxa.value, sya.value)
plt.axis('equal')
plt.title('Trajectory')
plt.savefig('Vehicle_traj.png')

# Plot state variables
plt.figure()
plt.suptitle('State Variables', fontsize=16)
# plot steering angle
plt.subplot(131)
plt.title('Steering Angle/Delta')
plt.plot(m.time, deltaa.value)
# plot velocity
plt.subplot(132)
plt.title('Velocity')
plt.plot(m.time, va.value)
# plot yaw angle
plt.subplot(133)
plt.title('Orientation/Psi')
plt.plot(m.time, psia.value)
plt.subplots_adjust(wspace=0.5)
plt.savefig('Vehicle_states.png')

# plot input
plt.figure()
plt.suptitle('Input', fontsize=16)
plt.subplot(121)
plt.title('Velocity of Steering Angle/v delta')
plt.plot(m.time, vdeltaa.value)
plt.subplot(122)
plt.title('Longitudinal Acceleration/long a')
plt.subplots_adjust(wspace=0.5)
plt.plot(m.time, longaa.value)
plt.savefig('Vehicle_input.png')
plt.show()

还有其他方法可以强制执行终端约束,包括另一种对 FV 进行硬约束的选项,如果您的问题需要这样做的话。 m.fix() 错误地将导数设置为零的问题被报告为 issue in the Gekko Github repository