DF作为矩阵的总结

Summary of DF as matrix

我已经搜索了很长时间,但找不到真正简单的方法。 我有一个仅由数值组成的 df,我想从我的 df 中创建一个汇总矩阵。

DF
V1   V2   V3   V4   V5  ...
x1   y1   z1   1    c1  
x2   NA   z2   0    c2
x3   y3   z3   1    NA
...

V4本来是一个TRUE/FALSE变量转化为数值变量,应该可以正常使用。 我想获得以下内容:

    N   Mean  SD  Min  1st  Median  3rd  Max
V1
V2 
V3
V4
V5
...

根据 N、平均值、SD、最小值、第 1、中值、第 3、最大值的值。 我试过简单的 as.data.frame(summary(DF)) 我试过 stargazer 但由于某种原因不起作用(我猜是因为我有二进制变量)

stargazer(DF, type= "html", nobs = TRUE, type="html", mean.sd = TRUE, median = TRUE, iqr = TRUE,
+           digits=2, align=T)

我读了一些关于 qwraps2_summary_table 的文章。但是它们似乎都给出了与我正在寻找的 "design" 不同的 table。

我知道我也可以 运行 像这样的循环:

for(i in (1:length(DF)){
sum$N<-(????)
sum$Mean<-mean(DF[i])
....}

但这不是最好的解决方案。 有小费吗?谢谢!

这是我数据集的一部分

structure(list(Year = c(2011, 2012, 2013, 2014, 2015, 2016, 2017, 
2018, 2018, 2011), Occurences = c(9L, 9L, 9L, 9L, 9L, 9L, 9L, 
9L, 2L, 9L), Balance = c(-1.14, 1.05, -1.06, 1.01, 1.01, 1.01, 
-1.09, -1, -1.04, -1.03), Withdrawal = c(43200, 41080, 43400, 
43183, 42600, 42100, 45900, 46000, 3892008, 48374), Verification_SA = c(NA, 
NA, NA, NA, 1, 1, NA, 1, 1, NA), Classification_num = c(NA, NA, 
NA, NA, 3, 2, NA, 4, 4, NA), Interaction_Verification_Classification = c(NA, 
NA, NA, NA, 3, 2, NA, 4, 4, NA), KnowledgeSources = c(1, 1, 1, 
0, 1, 1, 1, 1, 1, 0), KnowledgeDischarge = c(0, 0, 0, 0, 0, 1, 
1, 1, 1, 0), Scarcity_watershed = c(NA_real_, NA_real_, NA_real_, 
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_
), Scarcity_country = c(NA, NA, NA, NA, NA, NA, NA, NA, 3.35, 
NA), Knowledge_Watershed = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0), Knowledge_Facilities = c(0, 
0, 0, 0, 0, 0, 0, 0, 1, 1), Importance_num = c(NA, NA, NA, 3, 
3, 3, 3, 3, 5, NA), DetrimentalImpacts_num = c(0, 0, 1, 0, 0, 
0, 0, 0, 0, 0), Responsibility_num = c(1, 1, 1, 2, 2, 2, 2, 3, 
3, 1)), row.names = c(NA, -10L), class = c("tbl_df", "tbl", "data.frame"
))

如果以后有人发现这个问题,请根据@camille 的建议检查 。这是一种简单的方法,尽管它没有提供 NA 的数量。

library(psych)
my_summary <- do.call(rbind,lapply(DF,psych::describe,quant=c(0.25,0.75)))
my_summary
#                                        vars  n      mean         sd   median  trimmed     mad      min        max      range  skew kurtosis        se    Q0.25    Q0.75
#Year                                       1 10   2014.50       2.72  2014.50  2014.50    3.71  2011.00    2018.00       7.00  0.00    -1.74      0.86  2012.25  2016.75
#Occurences                                 1 10      8.30       2.21     9.00     9.00    0.00     2.00       9.00       7.00 -2.28     3.57      0.70     9.00     9.00
#Balance                                    1 10     -0.23       1.07    -1.02    -0.27    0.15    -1.14       1.05       2.19  0.35    -2.05      0.34    -1.06     1.01
#Withdrawal                                 1 10 428784.50 1216854.64 43300.00 44344.62 2535.25 41080.00 3892008.00 3850928.00  2.28     3.57 384803.22 42745.75 45975.00
#Verification_SA                            1  4      1.00       0.00     1.00     1.00    0.00     1.00       1.00       0.00   NaN      NaN      0.00     1.00     1.00
#Classification_num                         1  4      3.25       0.96     3.50     3.25    0.74     2.00       4.00       2.00 -0.32    -2.08      0.48     2.75     4.00
...

这是我的原始解决方案,使用 data.table

library(data.table)
my_summary <- rbindlist(lapply(DF, function(x){
  as.data.frame(t(c(
    summary(x),
    SD = sd(x,na.rm=TRUE),
    N = sum(!is.na(x)))))
  })
  , fill = TRUE, use.names = TRUE,idcol="Variable")
my_summary
#                                   Variable     Min.   1st Qu.    Median          Mean  3rd Qu.       Max.           SD  N NA's
# 1:                                    Year  2011.00  2012.250  2014.500   2014.500000  2016.75    2018.00 2.718251e+00 10   NA
# 2:                              Occurences     2.00     9.000     9.000      8.300000     9.00       9.00 2.213594e+00 10   NA
# 3:                                 Balance    -1.14    -1.055    -1.015     -0.228000     1.01       1.05 1.074800e+00 10   NA
# 4:                              Withdrawal 41080.00 42745.750 43300.000 428784.500000 45975.00 3892008.00 1.216855e+06 10   NA
# 5:                         Verification_SA     1.00     1.000     1.000      1.000000     1.00       1.00 0.000000e+00  4    6
# 6:                      Classification_num     2.00     2.750     3.500      3.250000     4.00       4.00 9.574271e-01  4    6

我们可以使用map循环遍历DF,获取summary统计数据,将其转换为data.frame,创建。 tibble 中的 'SD' 和 'N' 列以创建带有后缀的单个 data.frame 输出(_dfr in map

library(purrr)
library(dplyr)
map_dfr(DF, ~  tibble(SD = sd(.x, na.rm = TRUE), 
   N = sum(!is.na(.x)),  as.data.frame.list(base::summary(.x))),
     .id = 'Variable')
# A tibble: 16 x 10
#           SD     N     Min. X1st.Qu.   Median      Mean X3rd.Qu.     Max.  NA.s Variable                
# *      <dbl> <int>    <dbl>    <dbl>    <dbl>     <dbl>    <dbl>    <dbl> <dbl> <chr>                   
# 1    2.72e+0    10  2011     2012.    2014.     2.01e+3  2017.     2.02e3    NA Year                    
# 2    2.21e+0    10     2        9        9      8.30e+0     9      9.00e0    NA Occurences              
# 3    1.07e+0    10    -1.14    -1.06    -1.02  -2.28e-1     1.01   1.05e0    NA Balance                 
# 4    1.22e+6    10 41080    42746.   43300      4.29e+5 45975      3.89e6    NA Withdrawal              
# 5    0.          4     1        1        1      1.00e+0     1      1.00e0     6 Verification_SA         
# 6    9.57e-1     4     2        2.75     3.5    3.25e+0     4      4.00e0     6 Classification_num      
# 7    9.57e-1     4     2        2.75     3.5    3.25e+0     4      4.00e0     6 Interaction_Verificatio…
# 8    4.22e-1    10     0        1        1      8.00e-1     1      1.00e0    NA KnowledgeSources        
# 9    5.16e-1    10     0        0        0      4.00e-1     1      1.00e0    NA KnowledgeDischarge      
#10   NA           0    NA       NA       NA    NaN          NA     NA         10 Scarcity_watershed      
#11   NA           1     3.35     3.35     3.35   3.35e+0     3.35   3.35e0     9 Scarcity_country        
#12    0.         10     0        0        0      0.          0      0.        NA Knowledge_Watershed     
#13    4.22e-1    10     0        0        0      2.00e-1     0      1.00e0    NA Knowledge_Facilities    
#14    8.16e-1     6     3        3        3      3.33e+0     3      5.00e0     4 Importance_num          
#15    3.16e-1    10     0        0        0      1.00e-1     0      1.00e0    NA DetrimentalImpacts_num  
#16    7.89e-1    10     1        1        2      1.80e+0     2      3.00e0    NA Responsibility_num      

要以 Ian Campbell 的回答为基础,在需要时不要害怕构建汇总函数。

summaryfn <- function(x){
c(min(x),
quantile(x,0.25,na.rm=TRUE),
quantile(x,0.5,na.rm=TRUE),
mean(x,na.rm=TRUE),
sd(x, na.rm=TRUE),
quantile(x,0.75,na.rm=TRUE),
max(x,na.rm=TRUE),
sum(is.na(x)))

}

res <-   do.call(rbind,lapply(df,summaryfn))
colnames(res) <- c("Min","Q1","Med","Mean","Sd","Q3","Max","NAs")



## > res
##                                              Min        Q1       Med          Mean           Sd       Q3        Max NAs
## Year                                     2011.00  2012.250  2014.500   2014.500000 2.718251e+00  2016.75    2018.00   0
## Occurences                                  2.00     9.000     9.000      8.300000 2.213594e+00     9.00       9.00   0
## Balance                                    -1.14    -1.055    -1.015     -0.228000 1.074800e+00     1.01       1.05   0
## Withdrawal                              41080.00 42745.750 43300.000 428784.500000 1.216855e+06 45975.00 3892008.00   0
## Verification_SA                               NA     1.000     1.000      1.000000 0.000000e+00     1.00       1.00   6
## Classification_num                            NA     2.750     3.500      3.250000 9.574271e-01     4.00       4.00   6
## Interaction_Verification_Classification       NA     2.750     3.500      3.250000 9.574271e-01     4.00       4.00   6
## KnowledgeSources                            0.00     1.000     1.000      0.800000 4.216370e-01     1.00       1.00   0
## KnowledgeDischarge                          0.00     0.000     0.000      0.400000 5.163978e-01     1.00       1.00   0
## Scarcity_watershed                            NA        NA        NA           NaN           NA       NA       -Inf  10
## Scarcity_country                              NA     3.350     3.350      3.350000           NA     3.35       3.35   9
## Knowledge_Watershed                         0.00     0.000     0.000      0.000000 0.000000e+00     0.00       0.00   0
## Knowledge_Facilities                        0.00     0.000     0.000      0.200000 4.216370e-01     0.00       1.00   0
## Importance_num                                NA     3.000     3.000      3.333333 8.164966e-01     3.00       5.00   4
## DetrimentalImpacts_num                      0.00     0.000     0.000      0.100000 3.162278e-01     0.00       1.00   0
## Responsibility_num                          1.00     1.000     2.000      1.800000 7.888106e-01     2.00       3.00   0

## > str(res)
##  num [1:16, 1:8] 2011 2 -1.14 41080 NA ...
##  - attr(*, "dimnames")=List of 2
##   ..$ : chr [1:16] "Year" "Occurences" "Balance" "Withdrawal" ...
##   ..$ : chr [1:8] "Min" "Q1" "Med" "Mean" ...

虽然 stargazer 在很多情况下是一个不错的选择,但我还是推荐 xtable 因为它的灵活性。

print(xtable(res),type="html")