将模型输出写入文本文件 spark scala

Writing the model output to a text file spark scala

我使用 spark MLlib

安装了以下逻辑回归模型
val df = spark.read.option("header","true").option("inferSchema","true").csv("car_milage-6f50d.csv")
val hasher = new FeatureHasher().setInputCols(Array("mpg","displacement","hp","torque")).setOutputCol("features")
val transformed = hasher.transform(df)
val Array(training, test) = transformed.randomSplit(Array(0.8, 0.2))
val lr = new LogisticRegression()
  .setFeaturesCol("features")
  .setLabelCol("automatic")
  .setMaxIter(20)
val paramGrid = new ParamGridBuilder()
  .addGrid(lr.regParam, Array(0.1,0.3))
  .addGrid(lr.elasticNetParam, Array(0.9,1))
  .build()
val cv = new CrossValidator()
  .setEstimator(lr)
  .setEvaluator(new BinaryClassificationEvaluator())
  .setEstimatorParamMaps(paramGrid)
  .setNumFolds(10)
  .setParallelism(2)

val model = cv.fit(training)
val results = model.transform(test).select("features", "automatic", "prediction")

val predictionAndLabels = results.select("prediction","label").as[(Double, Double)].rdd

最后我得到了这些模型评估指标

val mMetrics = new MulticlassMetrics(predictionAndLabels)
mMetrics.confusionMatrix
mMetrics.labels
mMetrics.accuracy

作为文件步骤,我需要将这些评估指标 (mMetrics) 写入文件(可以是 csv 文件的文本文件)。谁能帮我怎么做?

我刚刚尝试过,但找不到与这些值关联的任何写入方法。

谢谢

MultiClassMetrics 的方法总结来看,我认为你应该可以这样做:

val confusionMatrixOutput = mMetrics.confusionMatrix.toArray
val confusionMatrixOutputFinal = spark.parallelize(confusionMatrixOutput)
confusionMatrixOutputFinal.coalesce(1).saveAsTextFile("C:/confusionMatrixOutput.txt")

你应该可以用 mMetrics.labels:

做同样的事情
val labelsOutput = mMetrics.labels
val labelsOutputFinal = spark.parallelize(labelsOutput)
labelsOutputFinal.coalesce(1).saveAsTextFile("C:/labelsOutput.txt")

准确度应该是两倍,这样您就可以轻松打印:

val accuracy = mMetrics.accuracy
println("Summary Statistics")
println(s"Accuracy = $accuracy")

您应该能够将逻辑回归模型的所有统计数据写入单个文件,如下所示:

 import java.io._

  object MulticlassMetricsOutputWriter {

  def main(args:Array[String]) {

    // All your other code can be added here

    val mMetrics = new MulticlassMetrics(predictionAndLabels)
    val labels = mMetrics.labels

    // Create new file and passing reference of file to the printWriter
    val pw = new PrintWriter(new File("C:/mllib_lr_output.txt"))

    // Confusion Matrix
    val confusionMatrixOutput = mMetrics.confusionMatrix.toArray
    val confusionMatrixOutputFinal = spark.parallelize(confusionMatrixOutput)
    pw.write(s"ConfusionMatrix:\n$confusionMatrixOutputFinal")

    // Labels
    val labelsOutput = mMetrics.labels
    val labelsOutputFinal = spark.parallelize(labelsOutput)
    pw.write(s"labels:\n$labelsOutputFinal")

    // False positive rate by label
    labels.foreach { l =>
      pw.write(s"FPR($l) = " + mMetrics.falsePositiveRate(l) + "\n")
    }

    // True positive rate by label
    labels.foreach { l =>
      pw.write(s"TPR($l) = " + mMetrics.truePositiveRate(l) + "\n")
    }

    // F-measure by label
    labels.foreach { l =>
      pw.write(s"F1-Score($l) = " + mMetrics.fMeasure(l) + "\n")
    }

    // Precision by label
    labels.foreach { l =>
      pw.write(s"Precision($l) = " + mMetrics.precision(l) + "\n")
    }

    // Recall by label
    labels.foreach { l =>
      pw.write(s"Recall($l) = " + mMetrics.recall(l) + "\n")
    }

    val accuracy = mMetrics.accuracy
    val weightedFalsePositiveRate = mMetrics.weightedFalsePositiveRate
    val weightedFMeasure = mMetrics.weightedFMeasure
    val weightedPrecision = mMetrics.weightedPrecision
    val weightedRecall = mMetrics.weightedRecall
    val weightedTruePositiveRate = mMetrics.weightedTruePositiveRate

    pw.write("Summary Statistics" + "\n")
    pw.write(s"Accuracy = $accuracy" + "\n")
    pw.write(s"weightedFalsePositiveRate = $weightedFalsePositiveRate" + "\n")
    pw.write(s"weightedFMeasure = $weightedFMeasure" + "\n")
    pw.write(s"weightedPrecision = $weightedPrecision" + "\n")
    pw.write(s"weightedRecall = $weightedRecall" + "\n")
    pw.write(s"weightedTruePositiveRate = $weightedTruePositiveRate" + "\n")

    // Closing the printWriter connection
    pw.close
  }
}