Rstudio Error: OVERFLOW in CCbigguy_addmult (4), BIGGUY errors are fatal

Rstudio Error: OVERFLOW in CCbigguy_addmult (4), BIGGUY errors are fatal

我正在尝试 运行 协和式飞机在从距离矩阵生成的 TSP 上。这是我的代码

library("TSP")
concordePath = "E:/Concorde_Code/"
concorde_path(concordePath)
concorde_help()

num_rows=10
num_cols = 10
data_4 = matrix(sample.int(15, size = 9*100, replace = TRUE), nrow = num_rows, ncol = num_cols)
data_4[data_4<floor(mean(data_4))] = 1
data_4[data_4>=floor(mean(data_4))] = 2
diag(data_4)<-0

atsp <- ATSP(data_4)
tsp <- reformulate_ATSP_as_TSP(atsp)
o2 <- solve_TSP(tsp, method = "concorde",rep=10)

当我运行上面的代码时,我得到以下错误

Used control parameters:
clo  =  
exe  =  E:\Concorde_Code\/concorde
precision    =  6
verbose  =  TRUE
keep_files   =  FALSE
TSP contains negative distances. Shifting distances by subtracting the minimum./Concorde_Code/concorde -x -o file1de86b0b1dba.sol file1de86b0b1dba.dat
Host: Pasha  Current process id: 1032
Using random seed 1586875562
Problem Name: TSP
Generated by write_TSPLIB (R-package TSP)
Problem Type: TSP
Number of Nodes: 20
Explicit Lengths (CC_MATRIXNORM)
Set initial upperbound to 2000000000 (from tour)
ERROR: No dual change in basis finding code
Did not find a basic optimal solution
Fractional matching routine failed
Warning: restarting running timer Miscellaneous
No warmstart, stumbling on anyway
Basic dual change required, but no candidate edges
  LP Value  1: 2000000000.000000  (0.00 seconds)
New lower bound: 2000000000.000000
Final lower bound 2000000000.000000, upper bound 2000000000.000000
OVERFLOW in CCbigguy_addmult (4)
BIGGUY errors are fatal
FATAL ERROR - received signal SIGABRT (6/6)
sleeping 1 more hours to permit debugger access

谁能告诉我我做错了什么?

协和飞机已正确安装。当我 运行 concorde_help() 时,我得到以下输出

The following options can be specified in solve_TSP with method "concorde" using clo in control:

/Concorde_Code/concorde
Usage: /Concorde_Code/concorde [-see below-] [dat_file]
   -B    do not branch
   -C #  maximum chunk size in localcuts (default 16)
   -d    use dfs branching instead of bfs
   -D f  edgegen file for initial edge set
   -e f  initial edge file
   -E f  full edge file (must contain initial edge set)
   -f    write optimal tour as edge file (default is tour file)
   -F f  read extra cuts from file
   -g h  be a grunt for boss h
   -h    be a boss for the branching
   -i    just solve the blossom polytope
   -I    just solve the subtour polytope
   -J #  number of tentative branches
   -k #  number of nodes for random problem
   -K h  use cut server h
   -M f  master file
   -m    use multiple passes of cutting loop
   -n s  problem location (just a name or host:name, not a file name)
   -o f  output file name (for optimal tour)
   -P f  cutpool file
   -q    do not cut the root lp
   -r #  use #x# grid for random points, no dups if #<0
   -R f  restart file
   -s #  random seed
   -S f  problem file
   -t f  tour file (in node node node format)
   -u v  initial upperbound
   -U    do not permit branching on subtour inequalities
   -v    verbose (turn on lots of messages)
   -V    just run fast cuts
   -w    just subtours and trivial blossoms
   -x    delete files on completion (sav pul mas)
   -X f  write the last root fractional solution to f
   -y    use simple cutting and branching in DFS
   -z #  dump the #-lowest reduced cost edges to file xxx.rcn
   -N #  norm (must specify if dat file is not a TSPLIB file)
         0=MAX, 1=L1, 2=L2, 3=3D, 4=USER, 5=ATT, 6=GEO, 7=MATRIX,
         8=DSJRAND, 9=CRYSTAL, 10=SPARSE, 11-15=RH-norm 1-5, 16=TOROIDAL
         17=GEOM, 18=JOHNSON

这是会话信息

R version 3.5.2 (2018-12-20)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows >= 8 x64 (build 9200)

Matrix products: default

locale:
[1] LC_COLLATE=English_United States.1252  LC_CTYPE=English_United States.1252   
[3] LC_MONETARY=English_United States.1252 LC_NUMERIC=C                          
[5] LC_TIME=English_United States.1252    

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] R.utils_2.9.2     R.oo_1.23.0       R.methodsS3_1.8.0 tspmeta_1.2       MASS_7.3-51.1    
[6] ggplot2_3.1.1     TSP_1.1-9        

loaded via a namespace (and not attached):
 [1] modeltools_0.2-22   tidyselect_0.2.5    xfun_0.4            purrr_0.2.5         kernlab_0.9-27     
 [6] lattice_0.20-38     colorspace_1.4-1    stats4_3.5.2        mgcv_1.8-26         yaml_2.2.0         
[11] rlang_0.3.4         pillar_1.4.1        glue_1.3.1          withr_2.1.2         prabclus_2.2-6     
[16] sp_1.3-1            fpc_2.1-11.1        bindrcpp_0.2.2      foreach_1.4.4       bindr_0.1.1        
[21] plyr_1.8.4          robustbase_0.93-3   stringr_1.4.0       munsell_0.5.0       gtable_0.3.0       
[26] mvtnorm_1.0-8       codetools_0.2-15    knitr_1.21          permute_0.9-5       parallel_3.5.2     
[31] flexmix_2.3-14      class_7.3-15        DEoptimR_1.0-8      trimcluster_0.1-2.1 Rcpp_1.0.1         
[36] backports_1.1.4     scales_1.0.0        diptest_0.75-7      checkmate_1.9.0     vegan_2.5-6        
[41] stringi_1.4.3       BBmisc_1.11         dplyr_0.7.8         splancs_2.01-40     grid_3.5.2         
[46] tools_3.5.2         magrittr_1.5        lazyeval_0.2.2      tibble_2.1.3        cluster_2.0.7-1    
[51] crayon_1.3.4        pkgconfig_2.0.2     Matrix_1.2-15       assertthat_0.2.1    rstudioapi_0.8     
[56] iterators_1.0.10    R6_2.4.0            mclust_5.4.2        nlme_3.1-137        nnet_7.3-12        
[61] compiler_3.5.2 

你能告诉我我做错了什么吗?

从相似性(或邻接矩阵)s 到相异性 d 的标准转换是 d = 1/s - 1。以下是也适用于协和式飞机(在 TSP 1.1-10 或更高版本中)的完整代码:

set.seed(1234)
library("igraph")

num_rows <- 10
num_cols <- 10
data_4 <- matrix(sample.int(15, size = 9*100, replace = TRUE), 
  nrow = num_rows, ncol = num_cols)

adjacency_matrix <- data_4<floor(mean(data_4))

g <- graph_from_adjacency_matrix(adjacency_matrix)  
plot(g)

d <- 1/adjacency_matrix - 1
atsp <- ATSP(d)

# the standard heuristic finds the optimal solution
o <- solve_TSP(atsp)
o
as.integer(o)


# Concord also finds an optimal solution.
o <- solve_TSP(tsp, method = "concorde")
o
as.integer(o)