Tidyr::crossing 超过 2 个参数 (..1,..2,..3)
Tidyr::crossing more than 2 parameters (..1,..2,..3)
library(dplyr)
library(fpp2) # for prison dataset
library(hts) # forecasting function
# prepare group time series
prison.gts <- gts(prison/1e3, characters = c(3,1,9),
gnames = c("State", "Gender", "Legal",
"State*Gender", "State*Legal",
"Gender*Legal"))
result_obj <- tidyr::crossing(methods = c('bu', 'comb'),
fmethods = c('arima'),
algorithms = c("lu", "cg", "chol", "recursive", "slm")) %>%
mutate(forecast_result = purrr::map2(methods, fmethods, algorithms,
~forecast.gts(prison.gts,
method = ..1,
fmethod = ..2,
algorithms = ..3)))
我正在使用 tidyr::crossing 创建可能的参数组合,然后这些参数组合将成为 forecast.gts() 的输入。
因为我有超过 2 个参数,所以使用 ..x 符号映射参数,即 ..1、..2、..3
https://purrr.tidyverse.org/reference/map2.html
但是,似乎每个组合的结果都是 NULL。
如果我单独调用函数,它会给出结果。
forecast.gts(prison.gts, method="bu", fmethod="arima", algorithms = 'lu')
map2
只需要 2 个参数。对于超过 2 个参数,使用 pmap
:
library(dplyr)
library(fpp2)
library(hts)
result_obj <- tidyr::crossing(
methods = c('bu', 'comb'),
fmethods = c('arima'),
algorithms = c("lu", "cg", "chol", "recursive", "slm")) %>%
mutate(forecast_result = purrr::pmap(list(methods, fmethods, algorithms),
~forecast.gts(prison.gts,
method = ..1,
fmethod = ..2,
algorithms = ..3)))
但是,此 returns 一条错误消息表明
Error: The recursive algorithm does not support a gts object.
所以您可能需要将其从 algorithms
向量中删除,之后它就可以正常工作了。
library(dplyr)
library(fpp2) # for prison dataset
library(hts) # forecasting function
# prepare group time series
prison.gts <- gts(prison/1e3, characters = c(3,1,9),
gnames = c("State", "Gender", "Legal",
"State*Gender", "State*Legal",
"Gender*Legal"))
result_obj <- tidyr::crossing(methods = c('bu', 'comb'),
fmethods = c('arima'),
algorithms = c("lu", "cg", "chol", "recursive", "slm")) %>%
mutate(forecast_result = purrr::map2(methods, fmethods, algorithms,
~forecast.gts(prison.gts,
method = ..1,
fmethod = ..2,
algorithms = ..3)))
我正在使用 tidyr::crossing 创建可能的参数组合,然后这些参数组合将成为 forecast.gts() 的输入。
因为我有超过 2 个参数,所以使用 ..x 符号映射参数,即 ..1、..2、..3 https://purrr.tidyverse.org/reference/map2.html
但是,似乎每个组合的结果都是 NULL。
如果我单独调用函数,它会给出结果。
forecast.gts(prison.gts, method="bu", fmethod="arima", algorithms = 'lu')
map2
只需要 2 个参数。对于超过 2 个参数,使用 pmap
:
library(dplyr)
library(fpp2)
library(hts)
result_obj <- tidyr::crossing(
methods = c('bu', 'comb'),
fmethods = c('arima'),
algorithms = c("lu", "cg", "chol", "recursive", "slm")) %>%
mutate(forecast_result = purrr::pmap(list(methods, fmethods, algorithms),
~forecast.gts(prison.gts,
method = ..1,
fmethod = ..2,
algorithms = ..3)))
但是,此 returns 一条错误消息表明
Error: The recursive algorithm does not support a gts object.
所以您可能需要将其从 algorithms
向量中删除,之后它就可以正常工作了。