Pytorch Custom Optimizer 得到一个空的参数列表
Pytorch Custom Optimizer got an empty parameter list
这里是新的。我正在尝试在 PyTorch 中创建一个自定义优化器,其中反向传播发生在元 RL 策略中,该策略接收模型参数,并输出所需的模型参数。但是,我看到了上述错误。我的模型在 Adam 和 SGD 上运行良好,但在我的优化器上运行不佳。
代码:
class MetaBackProp(torch.optim.Optimizer):
def __init__(self, params):
self.param_shape_list = np.array([])
for param in list(params):
np.append(self.param_shape_list, list(param.size()))
pseudo_lr = 1e-4
pseudo_defaults = dict(lr=pseudo_lr)
length = 100 #TODO: get shape, flatten, multiply...
self.policy = AEPolicy(length)
self.policy_optim = torch.optim.Adam(self.policy.parameters(), lr=pseudo_lr)
super(MetaBackProp, self).__init__(params, pseudo_defaults)
def step(self, closure=None):
params = torch.cat([p.view(-1) for p in self.param_groups])
self.policy_optim.zero_grad()
quit()
回溯:
Traceback (most recent call last):
File "main.py", line 6, in <module>
gan = CycleGAN()
File "/home/ai/Projects_v2/R/cycle_gan.py", line 32, in __init__
self.discriminator2_optim = MetaBackProp(self.discriminator2.parameters())
File "/home/ai/Projects_v2/R/lr_schedule.py", line 34, in __init__
super(MetaBackProp, self).__init__(params, pseudo_defaults)
File "/home/ai/anaconda3/lib/python3.7/site-packages/torch/optim/optimizer.py", line 46, in __init__
raise ValueError("optimizer got an empty parameter list")
ValueError: optimizer got an empty parameter list
您使用 self.discriminator2.parameters()
检索参数,其中 returns 是一个迭代器。在您的构造函数中,您将它们转换为 for 循环的列表:
for param in list(params):
这会消耗迭代器,但您将同一个迭代器传递给基类 class 的构造函数,因此它根本不包含任何参数。
super(MetaBackProp, self).__init__(params, pseudo_defaults)
您可以使用从迭代器创建的列表而不是传递迭代器,因为参数只需要是可迭代的,列表就是。
# Convert parameters to a list to allow multiple iterations
params = list(params)
for param in params:
这里是新的。我正在尝试在 PyTorch 中创建一个自定义优化器,其中反向传播发生在元 RL 策略中,该策略接收模型参数,并输出所需的模型参数。但是,我看到了上述错误。我的模型在 Adam 和 SGD 上运行良好,但在我的优化器上运行不佳。
代码:
class MetaBackProp(torch.optim.Optimizer):
def __init__(self, params):
self.param_shape_list = np.array([])
for param in list(params):
np.append(self.param_shape_list, list(param.size()))
pseudo_lr = 1e-4
pseudo_defaults = dict(lr=pseudo_lr)
length = 100 #TODO: get shape, flatten, multiply...
self.policy = AEPolicy(length)
self.policy_optim = torch.optim.Adam(self.policy.parameters(), lr=pseudo_lr)
super(MetaBackProp, self).__init__(params, pseudo_defaults)
def step(self, closure=None):
params = torch.cat([p.view(-1) for p in self.param_groups])
self.policy_optim.zero_grad()
quit()
回溯:
Traceback (most recent call last):
File "main.py", line 6, in <module>
gan = CycleGAN()
File "/home/ai/Projects_v2/R/cycle_gan.py", line 32, in __init__
self.discriminator2_optim = MetaBackProp(self.discriminator2.parameters())
File "/home/ai/Projects_v2/R/lr_schedule.py", line 34, in __init__
super(MetaBackProp, self).__init__(params, pseudo_defaults)
File "/home/ai/anaconda3/lib/python3.7/site-packages/torch/optim/optimizer.py", line 46, in __init__
raise ValueError("optimizer got an empty parameter list")
ValueError: optimizer got an empty parameter list
您使用 self.discriminator2.parameters()
检索参数,其中 returns 是一个迭代器。在您的构造函数中,您将它们转换为 for 循环的列表:
for param in list(params):
这会消耗迭代器,但您将同一个迭代器传递给基类 class 的构造函数,因此它根本不包含任何参数。
super(MetaBackProp, self).__init__(params, pseudo_defaults)
您可以使用从迭代器创建的列表而不是传递迭代器,因为参数只需要是可迭代的,列表就是。
# Convert parameters to a list to allow multiple iterations
params = list(params)
for param in params: