在解码器部分定义 NMT 和图像描述的维度

Defining dimension of NMT and image captioning with attention at the decoder part

我一直在仔细检查下面那些教程中的模型。

https://www.tensorflow.org/tutorials/text/nmt_with_attention

https://www.tensorflow.org/tutorials/text/image_captioning

两个教程中定义解码器的部分我都看不懂。

在 NMT 中,注意解码器部分如下,

class Decoder(tf.keras.Model):
  def __init__(self, vocab_size, embedding_dim, dec_units, batch_sz):
    super(Decoder, self).__init__()
    self.batch_sz = batch_sz
    self.dec_units = dec_units
    self.embedding = tf.keras.layers.Embedding(vocab_size, embedding_dim)
    self.gru = tf.keras.layers.GRU(self.dec_units,
                                   return_sequences=True,
                                   return_state=True,
                                   recurrent_initializer='glorot_uniform')
    self.fc = tf.keras.layers.Dense(vocab_size)

    # used for attention
    self.attention = BahdanauAttention(self.dec_units)

  def call(self, x, hidden, enc_output):
    # enc_output shape == (batch_size, max_length, hidden_size)
    context_vector, attention_weights = self.attention(hidden, enc_output)

    # x shape after passing through embedding == (batch_size, 1, embedding_dim)
    x = self.embedding(x)

    # x shape after concatenation == (batch_size, 1, embedding_dim + hidden_size)
    x = tf.concat([tf.expand_dims(context_vector, 1), x], axis=-1)

    # passing the concatenated vector to the GRU
    output, state = self.gru(x)

    # output shape == (batch_size * 1, hidden_size)
    output = tf.reshape(output, (-1, output.shape[2]))

    # output shape == (batch_size, vocab)
    x = self.fc(output)

    return x, state, attention_weights
  1. 这里,#经过embedding后的x形状== (batch_size, 1, embedding_dim) x = self.embedding(x)。这里的 x 应该是什么?它只是目标输入吗?

  2. 在上面,我不明白为什么输出形状必须是(batch_size * 1,hidden_size)。为什么 batch_size*1?

和图像字幕解码器部分如下,

class RNN_Decoder(tf.keras.Model):
  def __init__(self, embedding_dim, units, vocab_size):
    super(RNN_Decoder, self).__init__()
    self.units = units

    self.embedding = tf.keras.layers.Embedding(vocab_size, embedding_dim)
    self.gru = tf.keras.layers.GRU(self.units,
                                   return_sequences=True,
                                   return_state=True,
                                   recurrent_initializer='glorot_uniform')
    self.fc1 = tf.keras.layers.Dense(self.units)
    self.fc2 = tf.keras.layers.Dense(vocab_size)

    self.attention = BahdanauAttention(self.units)

  def call(self, x, features, hidden):
    # defining attention as a separate model
    context_vector, attention_weights = self.attention(features, hidden)

    # x shape after passing through embedding == (batch_size, 1, embedding_dim)
    x = self.embedding(x)

    # x shape after concatenation == (batch_size, 1, embedding_dim + hidden_size)
    x = tf.concat([tf.expand_dims(context_vector, 1), x], axis=-1)

    # passing the concatenated vector to the GRU
    output, state = self.gru(x)

    # shape == (batch_size, max_length, hidden_size)
    x = self.fc1(output)

    # x shape == (batch_size * max_length, hidden_size)
    x = tf.reshape(x, (-1, x.shape[2]))

    # output shape == (batch_size * max_length, vocab)
    x = self.fc2(x)

    return x, state, attention_weights

  def reset_state(self, batch_size):
    return tf.zeros((batch_size, self.units))

为什么输出形状必须重塑为 (batch_size * max_length, hidden_size)?

有人可以给我详细信息吗?

这对我很有帮助

重塑的原因是调用 TensorFlow 中的全连接层(与 Pytorch 不同)仅接受二维输入。

在第一个示例中,解码器的 call 方法应该在每个时间步长的 for 循环中执行(在训练和推理时间)。但是,GRU 需要形状为 batch × length × dim 的输入,如果你称它为 step-一步一步,长度为1.

在第二个示例中,您可以在训练时对整个真实序列调用解码器,但它仍然可以使用长度 1,因此您可以在推理时在 for 循环中使用它。