如何使用 2D np 数组作为输入创建 networkx 图形

How to create a networkx Graph using 2D np array as input

我的算法输出描述 3D 对象的顶点集 space (x, y, z)。在这种情况下,有两个对象:

verts = 
[[0.1 1.  1. ]  [1.  1.  0.1]  [1.  0.1 1. ]  [1.  1.  1.9]  [1.  1.9 1. ]
 [1.9 1.  1. ]  [7.1 8.  8. ]  [8.  8.  7.1]  [8.  7.1 8. ]  [8.  8.  8.9]
 [8.  8.9 8. ]  [8.9 8.  8. ]]

有两个四面体,一个以 (1, 1, 1) 为中心,另一个以 (8, 8, 8) 为中心。我的目标是使用广度优先搜索来识别对象是分开的,然后 classify 每个。我无法为我的算法获取正确形式的数据。

相反,我打算使用 networkx 模块,特别是使用 Graph class,它将 ndarrays 作为输入。我试过:

import networkx as nx
import numpy as np

graph = Graph(verts)
for idx, graph in enumerate(nx.connected_components(graph)):
    print("Graph ",idx, " in ", graph,'\n\n',file=open("output.txt","a"))     

但是,我无法创建图表。相反,我收到错误:

"Input is not a correct numpy matrix or array.")
networkx.exception.NetworkXError: Input is not a correct numpy matrix or array.

这让我很困惑,因为顶点类型 = numpy.ndarray。

我愿意使用 networkx 来完成这项任务,或者开发一些其他策略。此外,如果有任何编辑可以使 post 更清楚,请告诉我。

编辑:可能有帮助的一件事是另一个输出,面孔。这些 'define triangular faces via referencing vertex indices from verts.' 我相信这些可以用来 'connect' 或从一个顶点到另一个顶点画线,最终创建一个字典。

faces = 
[[ 2  1  0]  [ 0  3  2]  [ 1  4  0]  [ 0  4  3]  [ 5  1  2]  [ 3  5  2]
 [ 5  4  1]  [ 4  5  3]  [ 8  7  6]  [ 6  9  8]  [ 7 10  6]  [ 6 10  9]
 [11  7  8]  [ 9 11  8]  [11 10  7]  [10 11  9]]

提出了一种方法,对这组数据有效。但是,它并不适用于所有人。此修改会上传一组新数据。

verts = 
[[0.1 1.  1. ]  [1.  1.  0.1]  [1.  0.1 1. ]  [1.  1.  1.9]  [1.  1.9 1. ]  [1.9 1.  1. ]
 [3.1 1.  4. ]  [4.  1.  3.1]  [4.  0.1 4. ]  [4.  1.  4.9]  [4.  1.9 4. ]  [5.  1.  3.1]
 [5.  0.1 4. ]  [5.  1.  4.9]  [5.  1.9 4. ]  [5.9 1.  4. ]  [7.1 8.  8. ]
 [8.  8.  7.1]  [8.  7.1 8. ]  [8.  8.  8.9]  [8.  8.9 8. ]  [9.  8.  7.1]
 [9.  7.1 8. ]  [9.  8.  8.9]  [9.  8.9 8. ]  [9.9 8.  8. ]]

看起来像这样。

问题在于您如何构建图表。您应该首先使用 g = nx.Graph() 创建图的新实例,然后使用其方法添加其节点或边。在这种情况下,您想从嵌套列表中添加它的路径:

G = nx.Graph()
for path in verts:
    nx.add_path(G, path)

然后获取连通分量:

cc = list(nx.connected_components(G))
# [{0.1, 1.0, 1.9}, {7.1, 8.0, 8.9}]

现在,如果您想查找每条路径属于哪个组件,您可以遍历路径并检查它们与哪些组件相交:

from collections import defaultdict

subgraphs = defaultdict(list)

for path in verts:
    for ix,c in enumerate(cc):
        if c.intersection(path):
            subgraphs[ix].append(path)

print(subgraphs)

defaultdict(list,
            {0: [[0.1, 1.0, 1.0],
              [1.0, 1.0, 0.1],
              [1.0, 0.1, 1.0],
              [1.0, 1.0, 1.9],
              [1.0, 1.9, 1.0],
              [1.9, 1.0, 1.0]],
             1: [[7.1, 8.0, 8.0],
              [8.0, 8.0, 7.1],
              [8.0, 7.1, 8.0],
              [8.0, 8.0, 8.9],
              [8.0, 8.9, 8.0],
              [8.9, 8.0, 8.0]]})

我可以用另一种方法回答这个问题。它很长,因为我需要包括额外的部分。总的来说,我通过使用 faces 解决了这个问题,它定义了每个三角形及其顶点的索引。 faces 告诉我连接了哪些顶点。这使我能够构建一个线列表,其中包含顶点之间的所有连接。

# using faces and verts in original post
linelist = []
for idx, vert in enumerate(faces):
    print(vert)
    for i,x in enumerate(vert):
        l = [np.ndarray.tolist(verts[faces[idx][i]]), np.ndarray.tolist(verts[faces[idx][(i+1)%len(vert)]])]
        linelist.append(l)

产生如下元素:

[[1.0, 0.10000000149011612, 1.0], [1.0, 1.0, 0.10000000149011612]]

编辑:发现更快的方法:

tmp = [tuple(tuple(j) for j in i) for i in linelist]
graph = nx.Graph(tmp)
graphs = []
i=0
open('output.txt','w').close()
for idx, graph in enumerate(nx.connected_components(graph)):
    graphs.append(graph)
    print("Graph ",idx," corresponds to vertices: ",graph,'\n\n',file=open("output.txt","a"))         
    i+=1

这些点是相连的。接下来,我用别人的代码创建了一个字典,其中每个键是一个顶点,每个值是一个连接的顶点。然后我在这本词典上使用了呼吸优先搜索。请参阅下面的 class。

class MS_Graph():
    def __init__ (self, linelist=None, vertices=None):
        self.linelist = linelist if linelist is not None else None
        self.vertices = vertices if vertices is not None else None

    def getGraph(self):
        '''
        Takes self.linelist and converts to dict
        '''
        linelist = self.linelist
        # edge list usually reads v1 -> v2
        graph = {}
        # however these are lines so symmetry is assumed
        for l in linelist:
            v1, v2 = map(tuple, l)
            graph[v1] = graph.get(v1, ()) + (v2,)      
            graph[v2] = graph.get(v2, ()) + (v1,)
        return graph

    def BFS(self, graph):
        """
        Implement breadth-first search
        """
        # get nodes
        #nodes = list(graph.keys()) # changed 4/16/2020
        nodes = list(graph)
        graphs = []
        # check all nodes 
        while nodes:
            # initialize BFS
            toCheck = [nodes[0]]
            discovered = []
            # run bfs
            while toCheck:
                startNode = toCheck.pop()
                for neighbor in graph.get(startNode):
                    if neighbor not in discovered:
                        discovered.append(neighbor)
                        toCheck.append(neighbor)
                        nodes.remove(neighbor)
            # add discovered graphs
            graphs.append(discovered)
        self.graphs = graphs
        return graphs

而且,把它放在一起:

Graph = MS_Graph(linelist)
graph = Graph.getGraph()
graphs = Graph.BFS(graph)
print(len(graphs))
# output: 3
print(graphs)
# output:
[[(1.0, 1.0, 0.10000000149011612), (0.10000000149011612, 1.0, 1.0), (1.0, 1.0, 1.899999976158142), (1.899999976158142, 1.0, 1.0), (1.0, 0.10000000149011612, 1.0), (1.0, 1.899999976158142, 1.0)], 
[(4.0, 1.0, 3.0999999046325684), (3.0999999046325684, 1.0, 4.0), (4.0, 1.0, 4.900000095367432), (5.0, 1.0, 3.0999999046325684), (5.0, 0.10000000149011612, 4.0), (4.0, 0.10000000149011612, 4.0), (5.0, 1.0, 4.900000095367432), (5.900000095367432, 1.0, 4.0), (5.0, 1.899999976158142, 4.0), (4.0, 1.899999976158142, 4.0)], 
[(8.0, 8.0, 7.099999904632568), (7.099999904632568, 8.0, 8.0), (8.0, 8.0, 8.899999618530273), (8.899999618530273, 8.0, 8.0), (8.0, 7.099999904632568, 8.0), (8.0, 8.899999618530273, 8.0)]]

也就是说,我确实想知道是否有更快的方法。

编辑:可能有更快的方法。由于 faces 包含每个三角形的顶点,属于一个对象的所有三角形都将有一个完整的链。即构成对象 1 的顶点集将不同于构成任何其他对象的顶点集。

例如每个对象的面集:

object_1_faces = 
 [ 2  1  0]
 [ 0  3  2]
 [ 1  4  0]
 [ 0  4  3]
 [ 5  1  2]
 [ 3  5  2]
 [ 5  4  1]
 [ 4  5  3]
object_2_faces =
 [ 8  7  6]
 [ 6  9  8]
 [ 7 10  6]
 [ 6 10  9]
 [11  7  8]
 [ 9 11  8]
 [11 10  7]
 [10 11  9]
object_1_vertices = {0,1,2,3,4,5}
object_2_vertices = {6,7,8,9,10,11}

我想这意味着有比查找所有行更快的方法。