TfidfTransformer 和停用词
TfidfTransformer and stop words
我正在从 sklearn
导入 TfidfTransformer
并尝试使用 stop_word
参数,但它显示错误。
from sklearn.feature_extraction.text import TfidfTransformer
tfidf = TfidfTransformer(stop_words='english')
TypeError Traceback (most recent call last)
<ipython-input-16-1315a209c082> in <module>
1 from sklearn.feature_extraction.text import TfidfTransformer
----> 2 tfidf = TfidfTransformer(stop_words='english')
TypeError: __init__() got an unexpected keyword argument 'stop_words'
如何解决这个错误?
我认为您打算使用 TfidfVectorizer
,它具有参数 stop_words
。请参阅文档 here
示例:
from sklearn.feature_extraction.text import TfidfVectorizer
corpus = [
'This is the first document.',
'This document is the second document.',
'And this is the third one.',
'Is this the first document?',
]
vectorizer = TfidfVectorizer(stop_words='english')
X = vectorizer.fit_transform(corpus)
我正在从 sklearn
导入 TfidfTransformer
并尝试使用 stop_word
参数,但它显示错误。
from sklearn.feature_extraction.text import TfidfTransformer
tfidf = TfidfTransformer(stop_words='english')
TypeError Traceback (most recent call last)
<ipython-input-16-1315a209c082> in <module>
1 from sklearn.feature_extraction.text import TfidfTransformer
----> 2 tfidf = TfidfTransformer(stop_words='english')
TypeError: __init__() got an unexpected keyword argument 'stop_words'
如何解决这个错误?
我认为您打算使用 TfidfVectorizer
,它具有参数 stop_words
。请参阅文档 here
示例:
from sklearn.feature_extraction.text import TfidfVectorizer
corpus = [
'This is the first document.',
'This document is the second document.',
'And this is the third one.',
'Is this the first document?',
]
vectorizer = TfidfVectorizer(stop_words='english')
X = vectorizer.fit_transform(corpus)