如何计算 r 中非线性最小二乘法的置信区间?

How to calculate confidence intervals for Nonlinear Least Squares in r?

我在预测 r 中的 ros 和 nls 置信区间时遇到了一些问题。

pl <- ggplot(data) +  geom_point(aes(x=date, y=cases),size=2, colour="black") + xlab("Date") + ylab("Cases")  
model = nls(cases ~ SSlogis(log(date), Asym, xmid, scal), data= data )


new.data = data.frame(date=c(1:100))
interval <- predict(model, newdata = new.data, se.fit = TRUE, interval = "confidence", level= 0.9)

new.data[c("fit","lwr.conf", "upr.conf")] <- interval 

pl +   
  geom_ribbon(data=new.data, aes(x=date, ymin=lwr.pred, ymax=upr.pred), alpha=0.05, inherit.aes=F, fill="blue")

当我运行它时,它没有显示错误,但我得到的区间只是一个拟合向量,没有上下置信区间。

非线性置信区间可以通过包propagate:

模拟获得
library("propagate")

x  <- c(25, 25, 10, 10, 5, 5, 2.5, 2.5, 1.25, 1.25)
y <- c(0.0998, 0.0948, 0.076, 0.0724, 0.0557,
       0.0575, 0.0399, 0.0381, 0.017, 0.0253)

m <- nls(y ~ SSmicmen(x, Vm, K), trace = TRUE)

x1 <- seq(0, 25, length = 100)
plot(x, y, xlim = c(0, 25), ylim = c(0, 0.1))
lines(x1, predict(m, data.frame(S = x1)), col = "red")

y.conf <- predictNLS(m, newdata=data.frame(x=x1), interval="confidence", alpha=0.05, nsim=10000)$summary
y.pred <- predictNLS(m, newdata=data.frame(x=x1), interval="prediction", alpha=0.05, nsim=10000)$summary

matlines(x1, y.conf[,c("Sim.2.5%", "Sim.97.5%")], col="red", lty="dashed")
matlines(x1, y.pred[,c("Sim.2.5%", "Sim.97.5%")], col="blue", lty="solid")

我知道有 3 种方法可以做到这一点,其中一种在另一个答案中有所描述。这里有一些其他的选择。第一个使用 nls() 来拟合模型并使用 investr::predFit 进行预测和 CI:

 library(tidyverse)
 library(investr)
 data <- tibble(date = 1:7,
                cases = c(0, 0, 1, 4, 7, 8.5, 8.5))

    model <- nls(cases ~ SSlogis(log(date), Asym, xmid, scal), data= data )
    new.data <- data.frame(date=seq(1, 10, by = 0.1))
    interval <- as_tibble(predFit(model, newdata = new.data, interval = "confidence", level= 0.9)) %>% 
      mutate(date = new.data$date)

    p1 <- ggplot(data) +  geom_point(aes(x=date, y=cases),size=2, colour="black") + xlab("Date") + ylab("Cases")  

    p1+
      geom_line(data=interval, aes(x = date, y = fit ))+
      geom_ribbon(data=interval, aes(x=date, ymin=lwr, ymax=upr), alpha=0.5, inherit.aes=F, fill="blue")+
      theme_classic()

另一种选择是使用 'drc' 包(又名剂量反应曲线)进行模型拟合和预测。这个包使用需要使用(或创建)的内置启动函数,但是 class 'drc' 的对象有许多可以使用的有用方法 - 其中之一是 predict.drc 支持置信区间(尽管仅适用于一些内置的自我启动器)。包示例 'drc':

library(drc)
model_drc <- drm(cases~date, data = data, fct=LL.4())
predict_drc <- as_tibble(predict(model_drc, newdata = new.data, interval = "confidence", level = 0.9)) %>% 
  mutate(date = new.data$date)

p1+
  geom_line(data=predict_drc, aes(x = date, y = Prediction ))+
  geom_ribbon(data=predict_drc, aes(x=date, ymin=Lower, ymax=Upper), alpha=0.5, inherit.aes=F, fill="red")+
  ggtitle("with package 'drc'")+
  theme_classic()

有关 'drc' 软件包的更多信息:journal paper, blog article describing custom self-starts for drc, and the package docs