从长 table 创建二进制宽 table (如 tidyr::spread() )

Create a binary wide table from a long table (like tidyr::spread() )

作为树模型的输入,我在 SQL 中创建了一个分析 table。现在我想将它转移到 R,因为以 table 作为输入的模型在 R 中也是 运行。 我无法转换为 R 的 SQL 步之一。

分析table具有以下形式:

df <- data.frame(
  pseudonym = c("a", "a", "a", "b", "c", "c"),
  var1 = c(1,1,0,1,1,0),
  var2 = c(1,0,0,0,0,1),
  var3 = c(0,0,0,0,0,1))

> df
  pseudonym var1 var2 var3
1         a    1    1    0
2         a    1    0    0
3         a    0    0    0
4         b    1    0    0
5         c    1    0    0
6         c    0    1    1

在下一步中,我需要 假名 的不同行,同时保留来自其他列的信息 (1) var1, var2, var3. (在 SQL 中,这是通过 max(case when...then 1 else 0 end) as var1 )

因此从 df1 创建的结果 df2 应该是

df2 <- data.frame(
  pseudonym = c("a", "b", "c"),
  var1 = c(1,1,1),
  var2 = c(1,0,1),
  var3 = c(0,0,1))

> df2
  pseudonym var1 var2 var3
1         a    1    1    0
2         b    1    0    0
3         c    1    1    1

如果有人有想法会很有帮助。

这是一种方法:

library(dplyr)
library(tidyr)

df <- data.frame(
  pseudonym = c("a", "a", "a", "b", "c", "c"),
  var1 = c(1,1,0,1,1,0),
  var2 = c(1,0,0,0,0,1),
  var3 = c(0,0,0,0,0,1))

df %>% 
  pivot_longer(cols = var1:var3) %>% 
  group_by(pseudonym, name) %>% 
  filter(max(value) == value) %>% 
  ungroup() %>% 
  distinct() %>% 
  pivot_wider(names_from = name, values_from = value)

#># A tibble: 3 x 4
#>  pseudonym  var1  var2  var3
#>  <fct>     <dbl> <dbl> <dbl>
#>1 a             1     1     0
#>2 b             1     0     0
#>3 c             1     1     1

另一种 方法,可能不是很复杂但有效:

library(dplyr)
#> 
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#> 
#>     filter, lag
#> The following objects are masked from 'package:base':
#> 
#>     intersect, setdiff, setequal, union
df <- data.frame(
    pseudonym = c("a", "a", "a", "b", "c", "c"),
    var1 = c(1,1,0,1,1,0),
    var2 = c(1,0,0,0,0,1),
    var3 = c(0,0,0,0,0,1)); df
#>   pseudonym var1 var2 var3
#> 1         a    1    1    0
#> 2         a    1    0    0
#> 3         a    0    0    0
#> 4         b    1    0    0
#> 5         c    1    0    0
#> 6         c    0    1    1

df2 <- df %>% group_by(pseudonym) %>% mutate(var1 = case_when(1 %in% var1 ~ 1),
                                      var2 = case_when(1 %in% var2 ~ 1),
                                      var3 = case_when(1 %in% var3 ~ 1)) %>% 
                                      unique() %>% replace(is.na(.), 0) %>%
    ungroup(); df2
#> # A tibble: 3 x 4
#>   pseudonym  var1  var2  var3
#>   <fct>     <dbl> <dbl> <dbl>
#> 1 a             1     1     0
#> 2 b             1     0     0
#> 3 c             1     1     1

reprex package (v0.3.0)

于 2020-04-21 创建

我们可以使用max

library(data.table)
setDT(df)[, lapply(.SD, max), pseudonym]
#  pseudonym var1 var2 var3
#1:         a    1    1    0
#2:         b    1    0    0
#3:         c    1    1    1