字典映射 return Nan

Dictionary mapping return Nan

我有两个数据集,我想从 Table A 的两列创建一个字典,然后在 Table B 中创建一个新列,其性能类似于 excel vloopup

Table一个

Date       Wk of Year   ...Other columns
2020-1-1       1
2020-1-2       1
2020-1-10      2
2020-1-11      2

Table B

Shop   Date        Sales   ...Other columns
A      2020-1-1    100
B      2020-1-1    100
C      2020-1-1    100
A      2020-1-10   100

Expected Result
Shop   Date        Sales   Wk of Year
A      2020-1-1    100         1
B      2020-1-1    100         1
C      2020-1-1    100         1
A      2020-1-10   100         2

我从 Table A

创建字典的代码
name = pd.to_datetime(Table A['date'])
wk =   Table A['Wk of Year']
dict= dict(zip(name,wk))

Table B['wk'] = pd.to_datetime(Table B ['Date'].map(dict)

实际结果:

Shop   Date        Sales   Wk of Year
A      2020-1-1    100         NaT
B      2020-1-1    100         NaT
C      2020-1-1    100         Nat
A      2020-1-10   100         Nat

尝试 pandas merge 函数并传递 on arg - 它是关于要加入数据集的内容的列。

Table_merged = pd.merge(Table_B, Table_A['Date', 'Wk_of_Year'], on='Date')

它将创建您期望的数据集:

         Date  Sales Shop  Wk_of_Year
0  2020-01-01    100    A           1
1  2020-01-01    100    B           1
2  2020-01-01    100    C           1
3  2020-01-10    100    D           2

但如果您仍想使用您的策略 - 使用 pandas insert 函数:

date_wk_dct = {key: value for key, value in Table_A[['Date', 'Wk_of_Year']].get_values()}
Table_B.insert(3, "Wk_of_Year", [date_wk_dct[v] for v in iter(Table_B['Date'].get_values())], True)

这将在您现有的 Table_B 数据集中插入新列,结果将相同:

         Date  Sales Shop  Wk_of_Year
0  2020-01-01    100    A           1
1  2020-01-01    100    B           1
2  2020-01-01    100    C           1
3  2020-01-10    100    D           2