字典映射 return Nan
Dictionary mapping return Nan
我有两个数据集,我想从 Table A 的两列创建一个字典,然后在 Table B 中创建一个新列,其性能类似于 excel vloopup
Table一个
Date Wk of Year ...Other columns
2020-1-1 1
2020-1-2 1
2020-1-10 2
2020-1-11 2
Table B
Shop Date Sales ...Other columns
A 2020-1-1 100
B 2020-1-1 100
C 2020-1-1 100
A 2020-1-10 100
Expected Result
Shop Date Sales Wk of Year
A 2020-1-1 100 1
B 2020-1-1 100 1
C 2020-1-1 100 1
A 2020-1-10 100 2
我从 Table A
创建字典的代码
name = pd.to_datetime(Table A['date'])
wk = Table A['Wk of Year']
dict= dict(zip(name,wk))
Table B['wk'] = pd.to_datetime(Table B ['Date'].map(dict)
实际结果:
Shop Date Sales Wk of Year
A 2020-1-1 100 NaT
B 2020-1-1 100 NaT
C 2020-1-1 100 Nat
A 2020-1-10 100 Nat
尝试 pandas merge
函数并传递 on
arg - 它是关于要加入数据集的内容的列。
Table_merged = pd.merge(Table_B, Table_A['Date', 'Wk_of_Year'], on='Date')
它将创建您期望的数据集:
Date Sales Shop Wk_of_Year
0 2020-01-01 100 A 1
1 2020-01-01 100 B 1
2 2020-01-01 100 C 1
3 2020-01-10 100 D 2
但如果您仍想使用您的策略 - 使用 pandas insert
函数:
date_wk_dct = {key: value for key, value in Table_A[['Date', 'Wk_of_Year']].get_values()}
Table_B.insert(3, "Wk_of_Year", [date_wk_dct[v] for v in iter(Table_B['Date'].get_values())], True)
这将在您现有的 Table_B 数据集中插入新列,结果将相同:
Date Sales Shop Wk_of_Year
0 2020-01-01 100 A 1
1 2020-01-01 100 B 1
2 2020-01-01 100 C 1
3 2020-01-10 100 D 2
我有两个数据集,我想从 Table A 的两列创建一个字典,然后在 Table B 中创建一个新列,其性能类似于 excel vloopup
Table一个
Date Wk of Year ...Other columns
2020-1-1 1
2020-1-2 1
2020-1-10 2
2020-1-11 2
Table B
Shop Date Sales ...Other columns
A 2020-1-1 100
B 2020-1-1 100
C 2020-1-1 100
A 2020-1-10 100
Expected Result
Shop Date Sales Wk of Year
A 2020-1-1 100 1
B 2020-1-1 100 1
C 2020-1-1 100 1
A 2020-1-10 100 2
我从 Table A
创建字典的代码name = pd.to_datetime(Table A['date'])
wk = Table A['Wk of Year']
dict= dict(zip(name,wk))
Table B['wk'] = pd.to_datetime(Table B ['Date'].map(dict)
实际结果:
Shop Date Sales Wk of Year
A 2020-1-1 100 NaT
B 2020-1-1 100 NaT
C 2020-1-1 100 Nat
A 2020-1-10 100 Nat
尝试 pandas merge
函数并传递 on
arg - 它是关于要加入数据集的内容的列。
Table_merged = pd.merge(Table_B, Table_A['Date', 'Wk_of_Year'], on='Date')
它将创建您期望的数据集:
Date Sales Shop Wk_of_Year
0 2020-01-01 100 A 1
1 2020-01-01 100 B 1
2 2020-01-01 100 C 1
3 2020-01-10 100 D 2
但如果您仍想使用您的策略 - 使用 pandas insert
函数:
date_wk_dct = {key: value for key, value in Table_A[['Date', 'Wk_of_Year']].get_values()}
Table_B.insert(3, "Wk_of_Year", [date_wk_dct[v] for v in iter(Table_B['Date'].get_values())], True)
这将在您现有的 Table_B 数据集中插入新列,结果将相同:
Date Sales Shop Wk_of_Year
0 2020-01-01 100 A 1
1 2020-01-01 100 B 1
2 2020-01-01 100 C 1
3 2020-01-10 100 D 2