python 根据所选日期连接数据框
python dataframe concatenate based on a chosen date
假设我有以下变量和数据框:
a = '2020-04-23 14:00:00+00:00','2020-04-23 13:00:00+00:00','2020-04-23 12:00:00+00:00','2020-04-23 11:00:00+00:00','2020-04-23 10:00:00+00:00','2020-04-23 09:00:00+00:00','2020-04-23 08:00:00+00:00','2020-04-23 07:00:00+00:00','2020-04-23 06:00:00+00:00','2020-04-23 04:00:00+00:00'
b = '2020-04-23 10:00:00+00:00','2020-04-23 09:00:00+00:00','2020-04-23 08:00:00+00:00','2020-04-23 07:00:00+00:00','2020-04-23 06:00:00+00:00','2020-04-23 05:00:00+00:00','2020-04-23 04:00:00+00:00','2020-04-23 03:00:00+00:00','2020-04-23 02:00:00+00:00','2020-04-23 01:00:00+00:00'
aa = 7105.50,6923.50,6692.50,6523.00,6302.5,6081.5,6262.0,6451.50,6369.50,6110.00
bb = 6386.00,6221.00,6505.00,6534.70,6705.00,6535.00,7156.50,7422.00,7608.50,8098.00
df1 = pd.DataFrame()
df1['timestamp'] = a
df1['price'] = aa
df2 = pd.DataFrame()
df2['timestamp'] = b
df2['price'] = bb
print(df1)
print(df2)
我正在尝试连接以下行:
df1 的顶行到 '2020-04-23 08:00:00+00:00'
'2020-04-23 07:00:00+00:00'到df2的最后一行
出于说明目的,数据框应如下所示:
c = '2020-04-23 14:00:00+00:00','2020-04-23 13:00:00+00:00','2020-04-23 12:00:00+00:00','2020-04-23 11:00:00+00:00','2020-04-23 10:00:00+00:00','2020-04-23 09:00:00+00:00','2020-04-23 08:00:00+00:00','2020-04-23 07:00:00+00:00','2020-04-23 06:00:00+00:00','2020-04-23 05:00:00+00:00','2020-04-23 04:00:00+00:00','2020-04-23 03:00:00+00:00','2020-04-23 02:00:00+00:00','2020-04-23 01:00:00+00:00'
cc = 7105.50,6923.50,6692.50,6523.00,6302.5,6081.5,6262.0,6534.70,6705.00,6535.00,7156.50,7422.00,7608.50,8098.00
df = pd.DataFrame()
df['timestamp'] = c
df['price'] = cc
print(df)
有什么想法吗?
您可以将 timestamp
列转换为 pd.date_time
对象,然后使用布尔索引和 pd.concat
到 select 并合并它们:
df1.timestamp = pd.to_datetime(df1.timestamp)
df2.timestamp = pd.to_datetime(df2.timestamp)
dfs = [df1.loc[df1.timestamp >= pd.to_datetime("2020-04-23 08:00:00+00:00"),:],
df2.loc[df2.timestamp <= pd.to_datetime("2020-04-23 07:00:00+00:00"),:]
]
df_conc = pd.concat(dfs)
假设我有以下变量和数据框:
a = '2020-04-23 14:00:00+00:00','2020-04-23 13:00:00+00:00','2020-04-23 12:00:00+00:00','2020-04-23 11:00:00+00:00','2020-04-23 10:00:00+00:00','2020-04-23 09:00:00+00:00','2020-04-23 08:00:00+00:00','2020-04-23 07:00:00+00:00','2020-04-23 06:00:00+00:00','2020-04-23 04:00:00+00:00'
b = '2020-04-23 10:00:00+00:00','2020-04-23 09:00:00+00:00','2020-04-23 08:00:00+00:00','2020-04-23 07:00:00+00:00','2020-04-23 06:00:00+00:00','2020-04-23 05:00:00+00:00','2020-04-23 04:00:00+00:00','2020-04-23 03:00:00+00:00','2020-04-23 02:00:00+00:00','2020-04-23 01:00:00+00:00'
aa = 7105.50,6923.50,6692.50,6523.00,6302.5,6081.5,6262.0,6451.50,6369.50,6110.00
bb = 6386.00,6221.00,6505.00,6534.70,6705.00,6535.00,7156.50,7422.00,7608.50,8098.00
df1 = pd.DataFrame()
df1['timestamp'] = a
df1['price'] = aa
df2 = pd.DataFrame()
df2['timestamp'] = b
df2['price'] = bb
print(df1)
print(df2)
我正在尝试连接以下行:
df1 的顶行到 '2020-04-23 08:00:00+00:00'
'2020-04-23 07:00:00+00:00'到df2的最后一行
出于说明目的,数据框应如下所示:
c = '2020-04-23 14:00:00+00:00','2020-04-23 13:00:00+00:00','2020-04-23 12:00:00+00:00','2020-04-23 11:00:00+00:00','2020-04-23 10:00:00+00:00','2020-04-23 09:00:00+00:00','2020-04-23 08:00:00+00:00','2020-04-23 07:00:00+00:00','2020-04-23 06:00:00+00:00','2020-04-23 05:00:00+00:00','2020-04-23 04:00:00+00:00','2020-04-23 03:00:00+00:00','2020-04-23 02:00:00+00:00','2020-04-23 01:00:00+00:00'
cc = 7105.50,6923.50,6692.50,6523.00,6302.5,6081.5,6262.0,6534.70,6705.00,6535.00,7156.50,7422.00,7608.50,8098.00
df = pd.DataFrame()
df['timestamp'] = c
df['price'] = cc
print(df)
有什么想法吗?
您可以将 timestamp
列转换为 pd.date_time
对象,然后使用布尔索引和 pd.concat
到 select 并合并它们:
df1.timestamp = pd.to_datetime(df1.timestamp)
df2.timestamp = pd.to_datetime(df2.timestamp)
dfs = [df1.loc[df1.timestamp >= pd.to_datetime("2020-04-23 08:00:00+00:00"),:],
df2.loc[df2.timestamp <= pd.to_datetime("2020-04-23 07:00:00+00:00"),:]
]
df_conc = pd.concat(dfs)