模板化成员函数中的模板类型推导 class

template type deduction in a member function of a templated class

main函数第一行推导失败,不加模板参数如何解决

#include <iostream>

template <typename T>
class myVec{
    size_t _size{};
    size_t capacity{};
    T* data{};

public:
    myVec(size_t size = 0, T value = T{}):_size{size}, capacity{2 * _size}{
        data = new T[capacity];
        for(size_t index{}; index < _size; index++)
            data[ index ] = T{};
    }

    template <typename ... Ts>
    myVec( Ts&& ... vals):myVec{ sizeof...(vals)}{


        size_t index{};
        ((data [ ++index ] = vals),...);
    }

    ~myVec(){
        delete[] data;
    }
    size_t size( ){
        return _size;
    }
    /*the rest */

};

int main(){
    myVec vec {1, 32, 5, 6};

    for(size_t index{}; index < vec.size(); ++index )
        std::cout << vec[ index ] << " ";
}

Class 模板只能隐式推导出 class 模板参数,前提是它与构造函数完全匹配,例如:

template <typename T>
class myVec
{
    ...
    myVec(int, T); // T can be deduced since it's from the class template
    ...
};
...
myVec(5,5); // deduces myVec<int>

另一方面,构造函数模板中的类型不直接参与推导——因为推导的类型不一定与 class 模板的类型相同:

template <typename T>
class myVec
{
    ...
    template <typename U>
    myVec(int, U); // U may not be the same as T!
    ...
    template <typename...Ts>
    myVec(Ts&&...); // All 'Ts' types may not be the same as 'T'
    ...
};

解决这个问题的方法是 user-defined deduction guides。这些允许您定义在面对其他不明确的构造函数表达式时推导的类型。在你的情况下,你可能正在寻找类似的东西:

template <typename...Ts> 
myVec(Ts...) -> myVec<std::common_type_t<Ts...>>;

注意: std::common_type_t用于获取所有可变类型的公共类型。它在 <type_traits> header.

中定义