Pandas:执行多个复杂聚合的惯用方法?

Pandas: idiomatic way to perform multiple complex aggregations?

我有一个table如下:

ID   SCORE
A    NaN
A    NaN
B    1
B    2
C    5

我想要以下输出:

ID    SUM_SCORE   SIZE_SCORE
A     NaN         2
B     3           2
C     5           1

因为我想保留 NaN,所以我需要使用 sum(min_count=1)。所以到目前为止我有以下内容:

grp = df.groupby('ID')
sum_score = grp['SCORE'].sum(min_count=1).reset_index()
size_score = grp['SCORE'].size().reset_index()
result = pd.merge(sum_score, size_score, on=['ID'])

这感觉真的很不雅观。有没有更好的方法来获得我想要的结果?

s=df.groupby('ID').SCORE.agg([('sum_score',lambda x : x.sum(min_count=1)),
                             ('size_score','size')] ).reset_index()
  ID  sum_score  size_score
0  A        NaN           2
1  B        3.0           2
2  C        5.0           1

您可以使用以下方式进行汇总:

df_agg = df.groupby("ID", as_index=False).agg(["sum","count"])

# rename your columns
df_agg.columns = ["ID","SUM_SCORE", "SIZE_SCORE"]