如何从训练图像及其标签创建一个 caffemodel 文件?

How to create an caffemodel file from training image and its labeled?

我在 here 从事基于开源的年龄分类工作 python 代码有

age_net_pretrained='./age_net.caffemodel'
age_net_model_file='./deploy_age.prototxt'
age_net = caffe.Classifier(age_net_model_file, age_net_pretrained,
       channel_swap=(2,1,0),
       raw_scale=255,
       image_dims=(256, 256))

其中.prototxt文件如下所示。我留一个文件就是".caffemodel"。至于源码,他之前提供过。但是,我想根据我的面部数据库重新创建它。你能有任何教程或某种方法来创建它吗?我假设我有一个文件夹图像,其中包含 100 张图像并划分为每个年龄组(1 到 1),例如

image1.png 1
image2.png 1
..
image10.png 1
image11.png 2
image12.png 2
...
image100.png 10

这是 prototxt 文件。提前致谢

name: "CaffeNet"
input: "data"
input_dim: 1
input_dim: 3
input_dim: 227
input_dim: 227
layers {
  name: "conv1"
  type: CONVOLUTION
  bottom: "data"
  top: "conv1"
  convolution_param {
    num_output: 96
    kernel_size: 7
    stride: 4
  }
}
layers {
  name: "relu1"
  type: RELU
  bottom: "conv1"
  top: "conv1"
}
layers {
  name: "pool1"
  type: POOLING
  bottom: "conv1"
  top: "pool1"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}
layers {
  name: "norm1"
  type: LRN
  bottom: "pool1"
  top: "norm1"
  lrn_param {
    local_size: 5
    alpha: 0.0001
    beta: 0.75
  }
}
layers {
  name: "conv2"
  type: CONVOLUTION
  bottom: "norm1"
  top: "conv2"
  convolution_param {
    num_output: 256
    pad: 2
    kernel_size: 5
  }
}
layers {
  name: "relu2"
  type: RELU
  bottom: "conv2"
  top: "conv2"
}
layers {
  name: "pool2"
  type: POOLING
  bottom: "conv2"
  top: "pool2"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}
layers {
  name: "norm2"
  type: LRN
  bottom: "pool2"
  top: "norm2"
  lrn_param {
    local_size: 5
    alpha: 0.0001
    beta: 0.75
  }
}
layers {
  name: "conv3"
  type: CONVOLUTION
  bottom: "norm2"
  top: "conv3"
  convolution_param {
    num_output: 384
    pad: 1
    kernel_size: 3
  }
}
layers{
  name: "relu3" 
  type: RELU
  bottom: "conv3"
  top: "conv3"
}
layers {
  name: "pool5"
  type: POOLING
  bottom: "conv3"
  top: "pool5"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}
layers {
  name: "fc6"
  type: INNER_PRODUCT
  bottom: "pool5"
  top: "fc6"
  inner_product_param {
    num_output: 512
  }
}
layers {
  name: "relu6"
  type: RELU
  bottom: "fc6"
  top: "fc6"
}
layers {
  name: "drop6"
  type: DROPOUT
  bottom: "fc6"
  top: "fc6"
  dropout_param {
    dropout_ratio: 0.5
  }
}
layers {
  name: "fc7"
  type: INNER_PRODUCT
  bottom: "fc6"
  top: "fc7"
  inner_product_param {
    num_output: 512
  }
}
layers {
  name: "relu7"
  type: RELU
  bottom: "fc7"
  top: "fc7"
}
layers {
  name: "drop7"
  type: DROPOUT
  bottom: "fc7"
  top: "fc7"
  dropout_param {
    dropout_ratio: 0.5
  }
}
layers {
  name: "fc8"
  type: INNER_PRODUCT
  bottom: "fc7"
  top: "fc8"
  inner_product_param {
    num_output: 8
  }
}
layers {
  name: "prob"
  type: SOFTMAX
  bottom: "fc8"
  top: "prob"
}

要获得 caffemodel,您需要训练网络。该 prototxt 文件仅用于部署模型,不能用于训练它。

您需要添加指向数据库的数据层。要使用您提到的文件列表,图层的源应该是 HDF5。您可能想要添加一个带有平均值的 transform_param。为了提高效率,可以将图像文件替换为 LMDB 或 LevelDB 数据库。

在网络的末端,您必须用 'loss' 层替换 'prob' 层。像这样:

层数{ 姓名:"loss" 类型:SoftmaxWithLoss 底部:"fc8" 顶部:"loss" }

图层目录可以在这里找到:

http://caffe.berkeleyvision.org/tutorial/layers.html

或者,因为你的网络是一个众所周知的网络...看看这个教程 :P.

http://caffe.berkeleyvision.org/gathered/examples/imagenet.html

用于训练的正确 prototxt 文件包含在 caffe ('train_val.prototxt') 中。