Elasticsearch:按请求中传递的数组过滤文档包含所有文档数组元素
Elasticsearch: filter documents by array passed in request contains all document array elements
我存储在 elasticsearch 中的文档具有以下结构:
{
"id": 1,
"test": "name",
"rules": [
{
"id": 2,
"name": "rule1",
"ruleDetails": [
{
"id": 3,
"requiredAnswerId": 1
},
{
"id": 4,
"requiredAnswerId": 2
},
{
"id": 5,
"requiredAnswerId": 3
}
]
}
]
}
其中,rules
属性 具有 nested
类型。
我需要通过检查在搜索请求(提供的术语)中传递的 requiredAnswerId
数组包含存储在文档中的所有 rules.ruleDetails.requiredAnswerId
来查询文档。
有谁知道我可以使用哪个 elasticsearch 选项来构建这样的特定查询?或者,最好是获取整个文档并在应用程序级别执行过滤。
已更新
添加映射
{
"my_index": {
"mappings": {
"properties": {
"id": {
"type": "long"
},
"test": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword"
}
}
},
"rules": {
"type": "nested",
"properties": {
"id": {
"type": "long"
},
"name": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"ruleDetails": {
"properties": {
"id": {
"type": "long"
},
"requiredAnswerId": {
"type": "long"
}
}
}
}
}
}
}
}
}
映射:
{
"index4" : {
"mappings" : {
"properties" : {
"id" : {
"type" : "integer"
},
"rules" : {
"type" : "nested",
"properties" : {
"id" : {
"type" : "integer"
},
"name" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword"
}
}
},
"ruleDetails" : {
"properties" : {
"id" : {
"type" : "long"
},
"requiredAnswerId" : {
"type" : "long"
}
}
}
}
},
"test" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword"
}
}
}
}
}
}
}
查询: 这需要使用从性能角度看不太好的脚本。我正在遍历所有文档并检查是否存在字段是否传递了参数
{
"query": {
"nested": {
"path": "rules",
"query": {
"script": {
"script": {
"source": "for(a in doc['rules.ruleDetails.requiredAnswerId']){if(!params.Ids.contains((int)a)) return false; } return true;",
"params": {
"Ids": [
1,
2,
3
]
}
}
}
},
"inner_hits": {}
}
}
}
结果:
"hits" : [
{
"_index" : "index4",
"_type" : "_doc",
"_id" : "TxOpvnEBf42mOjxvvLQB",
"_score" : 4.0,
"_source" : {
"id" : 1,
"test" : "name",
"rules" : [
{
"id" : 2,
"name" : "rule1",
"ruleDetails" : [
{
"id" : 3,
"requiredAnswerId" : 1
},
{
"id" : 4,
"requiredAnswerId" : 2
},
{
"id" : 5,
"requiredAnswerId" : 3
}
]
},
{
"id" : 3,
"name" : "rule3",
"ruleDetails" : [
{
"id" : 3,
"requiredAnswerId" : 1
},
{
"id" : 4,
"requiredAnswerId" : 2
}
]
}
]
},
"inner_hits" : {
"rules" : {
"hits" : {
"total" : {
"value" : 1,
"relation" : "eq"
},
"max_score" : 4.0,
"hits" : [
{
"_index" : "index4",
"_type" : "_doc",
"_id" : "TxOpvnEBf42mOjxvvLQB",
"_nested" : {
"field" : "rules",
"offset" : 0
},
"_score" : 4.0,
"_source" : {
"id" : 2,
"name" : "rule1",
"ruleDetails" : [
{
"id" : 3,
"requiredAnswerId" : 1
},
{
"id" : 4,
"requiredAnswerId" : 2
},
{
"id" : 5,
"requiredAnswerId" : 3
}
]
}
}
]
}
}
}
}
]
编辑 1
Terms_set 可以作为替代。与脚本查询相比会更快
Returns documents that contain a minimum number of exact terms in a
provided field.
minimum_should_match_script- 数组大小可用于匹配传递值的最小数量。
查询:
{
"query": {
"nested": {
"path": "rules",
"query": {
"bool": {
"filter": {
"terms_set": {
"rules.ruleDetails.requiredAnswerId": {
"terms": [
1,
2,
3
],
"minimum_should_match_script": {
"source": "doc['rules.ruleDetails.requiredAnswerId'].size()"
}
}
}
}
}
},
"inner_hits": {}
}
}
}
在玩了一段时间ES并阅读了它的文档后,我发现你应该记住提供的script
应该被编译并应用于文档,因此它会更慢,如果你只知道需要提前匹配的元素个数。
因此,我创建了一个单独的字段 requiredMatches
来存储每个文档的 rules.ruleDetails.requiredAnswerId
元素的数量,并在索引文档之前计算它。然后,我没有在搜索查询中使用 minimum_should_match_script
,而是使用 minimum_should_match_field
:
{
"query": {
"nested": {
"path": "rules",
"query": {
"bool": {
"filter": {
"terms_set": {
"rules.ruleDetails.requiredAnswerId": {
"terms": [
1,
2,
3
],
"minimum_should_match_field": "requiredMatches"
}
}
}
}
},
"inner_hits": {}
}
}
}
我用了,following example,作为参考
我存储在 elasticsearch 中的文档具有以下结构:
{
"id": 1,
"test": "name",
"rules": [
{
"id": 2,
"name": "rule1",
"ruleDetails": [
{
"id": 3,
"requiredAnswerId": 1
},
{
"id": 4,
"requiredAnswerId": 2
},
{
"id": 5,
"requiredAnswerId": 3
}
]
}
]
}
其中,rules
属性 具有 nested
类型。
我需要通过检查在搜索请求(提供的术语)中传递的 requiredAnswerId
数组包含存储在文档中的所有 rules.ruleDetails.requiredAnswerId
来查询文档。
有谁知道我可以使用哪个 elasticsearch 选项来构建这样的特定查询?或者,最好是获取整个文档并在应用程序级别执行过滤。
已更新 添加映射
{
"my_index": {
"mappings": {
"properties": {
"id": {
"type": "long"
},
"test": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword"
}
}
},
"rules": {
"type": "nested",
"properties": {
"id": {
"type": "long"
},
"name": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"ruleDetails": {
"properties": {
"id": {
"type": "long"
},
"requiredAnswerId": {
"type": "long"
}
}
}
}
}
}
}
}
}
映射:
{
"index4" : {
"mappings" : {
"properties" : {
"id" : {
"type" : "integer"
},
"rules" : {
"type" : "nested",
"properties" : {
"id" : {
"type" : "integer"
},
"name" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword"
}
}
},
"ruleDetails" : {
"properties" : {
"id" : {
"type" : "long"
},
"requiredAnswerId" : {
"type" : "long"
}
}
}
}
},
"test" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword"
}
}
}
}
}
}
}
查询: 这需要使用从性能角度看不太好的脚本。我正在遍历所有文档并检查是否存在字段是否传递了参数
{
"query": {
"nested": {
"path": "rules",
"query": {
"script": {
"script": {
"source": "for(a in doc['rules.ruleDetails.requiredAnswerId']){if(!params.Ids.contains((int)a)) return false; } return true;",
"params": {
"Ids": [
1,
2,
3
]
}
}
}
},
"inner_hits": {}
}
}
}
结果:
"hits" : [
{
"_index" : "index4",
"_type" : "_doc",
"_id" : "TxOpvnEBf42mOjxvvLQB",
"_score" : 4.0,
"_source" : {
"id" : 1,
"test" : "name",
"rules" : [
{
"id" : 2,
"name" : "rule1",
"ruleDetails" : [
{
"id" : 3,
"requiredAnswerId" : 1
},
{
"id" : 4,
"requiredAnswerId" : 2
},
{
"id" : 5,
"requiredAnswerId" : 3
}
]
},
{
"id" : 3,
"name" : "rule3",
"ruleDetails" : [
{
"id" : 3,
"requiredAnswerId" : 1
},
{
"id" : 4,
"requiredAnswerId" : 2
}
]
}
]
},
"inner_hits" : {
"rules" : {
"hits" : {
"total" : {
"value" : 1,
"relation" : "eq"
},
"max_score" : 4.0,
"hits" : [
{
"_index" : "index4",
"_type" : "_doc",
"_id" : "TxOpvnEBf42mOjxvvLQB",
"_nested" : {
"field" : "rules",
"offset" : 0
},
"_score" : 4.0,
"_source" : {
"id" : 2,
"name" : "rule1",
"ruleDetails" : [
{
"id" : 3,
"requiredAnswerId" : 1
},
{
"id" : 4,
"requiredAnswerId" : 2
},
{
"id" : 5,
"requiredAnswerId" : 3
}
]
}
}
]
}
}
}
}
]
编辑 1
Terms_set 可以作为替代。与脚本查询相比会更快
Returns documents that contain a minimum number of exact terms in a provided field.
minimum_should_match_script- 数组大小可用于匹配传递值的最小数量。
查询:
{
"query": {
"nested": {
"path": "rules",
"query": {
"bool": {
"filter": {
"terms_set": {
"rules.ruleDetails.requiredAnswerId": {
"terms": [
1,
2,
3
],
"minimum_should_match_script": {
"source": "doc['rules.ruleDetails.requiredAnswerId'].size()"
}
}
}
}
}
},
"inner_hits": {}
}
}
}
在玩了一段时间ES并阅读了它的文档后,我发现你应该记住提供的script
应该被编译并应用于文档,因此它会更慢,如果你只知道需要提前匹配的元素个数。
因此,我创建了一个单独的字段 requiredMatches
来存储每个文档的 rules.ruleDetails.requiredAnswerId
元素的数量,并在索引文档之前计算它。然后,我没有在搜索查询中使用 minimum_should_match_script
,而是使用 minimum_should_match_field
:
{
"query": {
"nested": {
"path": "rules",
"query": {
"bool": {
"filter": {
"terms_set": {
"rules.ruleDetails.requiredAnswerId": {
"terms": [
1,
2,
3
],
"minimum_should_match_field": "requiredMatches"
}
}
}
}
},
"inner_hits": {}
}
}
}
我用了,following example,作为参考