使用 stargazer 在不同的 table 列中拆分系数

Split coefficients in different table columns with stargazer

我的模型输出具有 32 个系数。我希望它们全部显示在一个 table 中,并想出了在一列中分别显示 16 个系数及其固有估计值和 p 值的想法。有什么方法可以对模型输出进行切片或告诉 stargazer 将输出拆分为不同的列吗?

poisson_model <- 
  bind_rows(
    tibble(
      goals = database_mr$goals_team_home,
      team = database_mr$club_name_home,
      opponent=database_mr$club_name_away,
      home=1),
    tibble(
      goals=database_mr$goals_team_away,
      team=database_mr$club_name_away,
      opponent=database_mr$club_name_home,
      home=0)) %>%

  glm(goals ~ home + team +opponent, family=poisson(link=log),data=.)
summary(poisson_model)

Coefficients:
                              Estimate Std. Error z value Pr(>|z|)    
(Intercept)                    0.75216    0.22805   3.298 0.000973 ***
home                           0.24096    0.07588   3.176 0.001495 ** 
teamAdler Weseke II           -1.04748    0.24868  -4.212 2.53e-05 ***
teamBVH Dorsten               -0.28911    0.19946  -1.449 0.147200    
teamFC RW Dorsten             -0.87653    0.23168  -3.783 0.000155 ***
teamFenerbahce I. Marl        -0.56356    0.20580  -2.738 0.006175 ** 
teamSC Marl-Hamm              -0.14523    0.19169  -0.758 0.448688    
teamSC Reken II               -0.40481    0.20569  -1.968 0.049057 *  
teamSV Altendorf-Ulfkotte     -1.25184    0.27720  -4.516 6.30e-06 ***
teamSV Lembeck                -0.21607    0.19568  -1.104 0.269518    
teamSV Schermbeck II          -0.16674    0.18600  -0.896 0.370028    
teamTSV Raesfeld               0.02094    0.17866   0.117 0.906682    
teamTuS 05 Sinsen II          -0.90159    0.24070  -3.746 0.000180 ***
teamTuS Gahlen                -0.26630    0.19142  -1.391 0.164171    
teamTuS Velen                 -0.40946    0.20151  -2.032 0.042159 *  
teamVfL Ramsdorf               0.07215    0.17726   0.407 0.683973    
teamWestfalia Gemen II        -0.55929    0.20990  -2.665 0.007709 ** 
opponentAdler Weseke II        0.59518    0.21831   2.726 0.006405 ** 
opponentBVH Dorsten            0.05072    0.25027   0.203 0.839389    
opponentFC RW Dorsten          0.17760    0.23700   0.749 0.453647    
opponentFenerbahce I. Marl     0.10922    0.24428   0.447 0.654802    
opponentSC Marl-Hamm           0.50746    0.22592   2.246 0.024691 *  
opponentSC Reken II            0.69698    0.21994   3.169 0.001530 ** 
opponentSV Altendorf-Ulfkotte  1.08930    0.20466   5.322 1.02e-07 ***
opponentSV Lembeck             0.35564    0.22962   1.549 0.121428    
opponentSV Schermbeck II      -0.26666    0.27163  -0.982 0.326254    
opponentTSV Raesfeld          -0.08465    0.25771  -0.328 0.742563    
opponentTuS 05 Sinsen II       0.58102    0.21870   2.657 0.007891 ** 
opponentTuS Gahlen            -0.81158    0.31450  -2.581 0.009865 ** 
opponentTuS Velen              0.28034    0.23333   1.201 0.229578    
opponentVfL Ramsdorf          -0.43481    0.28270  -1.538 0.124030    
opponentWestfalia Gemen II     0.59072    0.22016   2.683 0.007293 ** 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Stargazer 为您提供了手动提供系数列表和相应标准误差的选项。你可以 "trick" stargazer with passing 两个模型,然后手动传递系数。这很有效,因为 stargazer 按名称匹配不同模型的系数。缺点是你需要 运行 一个 "fake regression",你需要调整 obs,rsquared 等。但是,你可以很容易地提取所需的信息并将其添加到 table 中 add.lines.

这是运行使用主队和对方球队的二元指标进行回归并在两列中报告系数的最终结果:

代码:

library(stargazer)

# generate some data
d <- data.frame(score=rpois(1000,1),
                   home=sample(letters[1:10],1000,replace=T ),
                   opp=sample(letters[1:10],1000,replace=T ))
head(d)
       score home opp
1:     2    c   g
2:     1    j   g
3:     0    e   f
4:     1    f   j
5:     0    d   i
6:     1    d   f

# create a fake model
# note that home needs to include all of your factors
fake <- lm(score ~ home - 1, d)
# rename the coefficients
names(fake$coefficients) <- gsub("home","",names(fake$coefficients))

# run your regression 
m <- glm(score ~ home + opp - 1, d, family=poisson(link=log) )
summary(m)
Call:
glm(formula = score ~ home + opp - 1, family = poisson(link = log), 
    data = d)

Deviance Residuals: 
     Min        1Q    Median        3Q       Max  
-1.68446  -1.36736  -0.00948   0.60121   2.85408  

Coefficients:
        Estimate Std. Error z value Pr(>|z|)  
homea  0.0286251  0.1407933   0.203   0.8389  
homeb -0.1563594  0.1352870  -1.156   0.2478  
homec -0.0673791  0.1378263  -0.489   0.6249  
homed -0.0425058  0.1383590  -0.307   0.7587  
homee -0.0612811  0.1463620  -0.419   0.6754  
homef -0.0028756  0.1407210  -0.020   0.9837  
homeg -0.0263096  0.1419598  -0.185   0.8530  
homeh -0.0421442  0.1371384  -0.307   0.7586  
homei  0.0871397  0.1382671   0.630   0.5285  
homej -0.0650161  0.1354183  -0.480   0.6311  
oppb  -0.0102711  0.1459574  -0.070   0.9439  
oppc   0.2625987  0.1426320   1.841   0.0656 .
oppd   0.1465768  0.1417666   1.034   0.3012  
oppe   0.0123358  0.1384327   0.089   0.9290  
oppf  -0.0007423  0.1381802  -0.005   0.9957  
oppg  -0.0035419  0.1481746  -0.024   0.9809  
opph   0.0852252  0.1378236   0.618   0.5363  
oppi  -0.0695733  0.1474909  -0.472   0.6371  
oppj  -0.0577961  0.1478874  -0.391   0.6959  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for poisson family taken to be 1)

    Null deviance: 1124.6  on 1000  degrees of freedom
Residual deviance: 1111.8  on  981  degrees of freedom
AIC: 2624.1

Number of Fisher Scoring iterations: 5
m.s <- summary(m)

## write a function that fixes the names in the glm output
f <- function(x){
  names(x) <- gsub("home|opp","", names(x))
  return(x)
}

# now you can retrieve variables according to the prefix
m.s$coefficients[grepl("home", rownames(m.s$coefficients)), 1]
       homeb        homec        homed        homee        homef        homeg        homeh        homei        homej 
-0.008070675  0.287148469 -0.043331430  0.047798075  0.005438897  0.261008373  0.134444746  0.083937955  0.113310674 

stargazer(fake,fake,
          # coefficients
          coef = list(
            f( m.s$coefficients[grepl("home", rownames(m.s$coefficients)), 1]),
            f( m.s$coefficients[grepl("opp", rownames(m.s$coefficients)), 1])
          ),
          # standard errors
          se = list(
            f( m.s$coefficients[grepl("home", rownames(m.s$coefficients)), 2]),
            f( m.s$coefficients[grepl("opp", rownames(m.s$coefficients)), 2])
          ),
          column.labels = c("home", "opp"),
          # calculate pvalue using supplied coeff and se
          t.auto = T,
          out = "stargazer_d.html",
          omit.stat=c("all"),
          type = "html")

使用您的数据:

d <- readr::read_rds( "database_match_results_1920.rds") 
d <- 
  bind_rows(
    tibble(
      goals = database_mr$goals_team_home,
      team = database_mr$club_name_home,
      opponent=database_mr$club_name_away,
      home=1),
    tibble(
      goals=database_mr$goals_team_away,
      team=database_mr$club_name_away,
      opponent=database_mr$club_name_home,
      home=0))

# create a fake model
# note that team needs to include all of your factors
fake <- lm(goals ~ home + team , d)
# rename the coefficients
names(fake$coefficients) <- gsub("team","",names(fake$coefficients))


# 
m <- glm(goals ~ home + team +opponent, family=poisson(link=log),data=d)
m.s <- summary(m)

## write a function that fixes the names in the glm output
f <- function(x){
  names(x) <- gsub("team|opponent","", names(x))
  return(x)
}

stargazer(fake,fake,
          # coefficients
          coef = list(
            f( m.s$coefficients[grepl("Intercept|home|team", rownames(m.s$coefficients)), 1]),
            f( m.s$coefficients[grepl("opponent", rownames(m.s$coefficients)), 1])
          ),
          # standard errors
          se = list(
            f( m.s$coefficients[grepl("Intercept|home|team", rownames(m.s$coefficients)), 2]),
            f( m.s$coefficients[grepl("opponent", rownames(m.s$coefficients)), 2])
          ),
          column.labels = c("team", "opponent"),
          # calculate pvalue using supplied coeff and se
          t.auto = T,
          out = "stargazer_data.html",
          omit.stat=c("all"),
          type = "html")

有 3 列:

stargazer(fake,fake,fake,
          # coefficients
          coef = list(
            f( m.s$coefficients[grepl("Intercept|home", rownames(m.s$coefficients)), 1]),
            f( m.s$coefficients[grepl("team", rownames(m.s$coefficients)), 1]),
            f( m.s$coefficients[grepl("opponent", rownames(m.s$coefficients)), 1])
          ),
          # standard errors
          se = list(
            f( m.s$coefficients[grepl("Intercept|home", rownames(m.s$coefficients)), 2]),
            f( m.s$coefficients[grepl("team", rownames(m.s$coefficients)), 2]),
            f( m.s$coefficients[grepl("opponent", rownames(m.s$coefficients)), 2])
          ),
          column.labels = c("control","team", "opponent"),
          # calculate pvalue using supplied coeff and se
          t.auto = T,
          out = "stargazer_data.html",
          omit.stat=c("all"),
          type = "html")