如何理解 reasoner ProgressMonitor 输出?

How to understand reasoner ProgressMonitor output?

我是语义网领域的新手,我正在尝试比较更多推理机。这是我的代码:

   OWLOntologyManager manager = OWLManager.createOWLOntologyManager();
    File file = new File(args[0]);
    OWLOntology ontology = manager.loadOntologyFromOntologyDocument(file);
    Set<OWLClass> classes = ontology.getClassesInSignature();


    String inferredFile = args[1];
    //test for correctly uploading ontology
    OWLDataFactory df = manager.getOWLDataFactory();     
    Reasoner jfact = Reasoner.JFACT;
    System.out.println(RunReasoner(jfact, df,ontology,manager,inferredFile));



}

//CREATE AN ENUM REASONER
public enum Reasoner{
    HERMIT, 
    PELLET, 
    KONCLUDE,
    JFACT,
    FACT,
    ELK

}   
    public static String RunReasoner(Reasoner reasoner, OWLDataFactory df, OWLOntology ontology,                                                         OWLOntologyManager manager, String inferredFile) throws OWLOntologyCreationException, FileNotFoundException, IOException, OWLOntologyStorageException {
    String esito = "";
    OWLReasoner reasoner_object = null;
    if(reasoner == Reasoner.HERMIT) {
        /****************HERMIT****************************************************************************************/

        OWLReasonerFactory rf = new ReasonerFactory();
        TimedConsoleProgressMonitor progressMonitor = new TimedConsoleProgressMonitor();
        Configuration configuration = new Configuration();
        configuration.reasonerProgressMonitor = progressMonitor;
        configuration.ignoreUnsupportedDatatypes = true;
        reasoner_object = rf.createReasoner(ontology, configuration);


    }
    else if(reasoner == Reasoner.KONCLUDE) {

        // configure the server end-point
        URL url = new URL("http://localhost:8080");
        OWLlinkHTTPXMLReasonerFactory factory = new OWLlinkHTTPXMLReasonerFactory();
        TimedConsoleProgressMonitor progressMonitor = new TimedConsoleProgressMonitor();
        //OWLlinkReasonerConfiguration conf = (OWLlinkReasonerConfiguration) new SimpleConfiguration(progressMonitor);
        reasoner_object = factory.createNonBufferingReasoner(ontology);

    }
    else if(reasoner == Reasoner.JFACT) {
        TimedConsoleProgressMonitor progressMonitor = new TimedConsoleProgressMonitor();
        OWLReasonerConfiguration conf = new SimpleConfiguration(progressMonitor);
        JFactFactory factory = new JFactFactory();          
        reasoner_object = factory.createNonBufferingReasoner(ontology,conf);
    }
    //      else if(reasoner == Reasoner.FACT) {
    //          TimedConsoleProgressMonitor progressMonitor = new TimedConsoleProgressMonitor();
    //          OWLReasonerConfiguration conf = new SimpleConfiguration(progressMonitor);
    //          FaCTPlusPlusReasonerFactory factory = new FaCTPlusPlusReasonerFactory();
    //          reasoner_object = factory.createNonBufferingReasoner(ontology,conf);
    //      }
    else if(reasoner == Reasoner.ELK) {
        TimedConsoleProgressMonitor progressMonitor = new TimedConsoleProgressMonitor();
        OWLReasonerConfiguration conf = new SimpleConfiguration(progressMonitor);
        ElkReasonerFactory factory = new ElkReasonerFactory();
        reasoner_object = factory.createNonBufferingReasoner(ontology,conf);
    }
    else if(reasoner == Reasoner.PELLET) {
        TimedConsoleProgressMonitor progressMonitor = new TimedConsoleProgressMonitor();
        OWLReasonerConfiguration conf = new SimpleConfiguration(progressMonitor);
        reasoner_object = OpenlletReasonerFactory.getInstance().createReasoner(ontology,conf);          
    }
    else{
        esito = "Reasoner non valido";
    }
     boolean consistencyCheck = reasoner_object.isConsistent();
            if (consistencyCheck) {
                reasoner_object.precomputeInferences(InferenceType.CLASS_HIERARCHY,
                    InferenceType.CLASS_ASSERTIONS, InferenceType.OBJECT_PROPERTY_HIERARCHY,
                    InferenceType.DATA_PROPERTY_HIERARCHY, InferenceType.OBJECT_PROPERTY_ASSERTIONS);
                List<InferredAxiomGenerator<? extends OWLAxiom>> generators = new ArrayList<>();
                generators.add(new InferredSubClassAxiomGenerator());
                generators.add(new InferredClassAssertionAxiomGenerator());
                generators.add(new InferredDataPropertyCharacteristicAxiomGenerator());
                generators.add(new InferredEquivalentClassAxiomGenerator());
                generators.add(new InferredEquivalentDataPropertiesAxiomGenerator());
                generators.add(new InferredEquivalentObjectPropertyAxiomGenerator());
                generators.add(new InferredInverseObjectPropertiesAxiomGenerator());
                generators.add(new InferredObjectPropertyCharacteristicAxiomGenerator());

                // NOTE: InferredPropertyAssertionGenerator significantly slows down
                // inference computation
                generators.add(new org.semanticweb.owlapi.util.InferredPropertyAssertionGenerator());

                generators.add(new InferredSubClassAxiomGenerator());
                generators.add(new InferredSubDataPropertyAxiomGenerator());
                generators.add(new InferredSubObjectPropertyAxiomGenerator());
                List<InferredIndividualAxiomGenerator<? extends OWLIndividualAxiom>> individualAxioms =
                    new ArrayList<>();
                generators.addAll(individualAxioms);

                generators.add(new InferredDisjointClassesAxiomGenerator());
                InferredOntologyGenerator iog = new InferredOntologyGenerator(reasoner_object, generators); //Generates an ontology based on inferred axioms which are essentially supplied by a reasoner

                OWLOntology inferredAxiomsOntology = manager.createOntology();
                iog.fillOntology(df, inferredAxiomsOntology);
                System.out.println(inferredAxiomsOntology.getAxiomCount());
    //                  for(InferredAxiomGenerator<?> i : iog.getAxiomGenerators()) {
    //                      System.out.println(i);}
                File inferredOntologyFile = new File(inferredFile);
                // Now we create a stream since the ontology manager can then write to that stream.
                try (OutputStream outputStream = new FileOutputStream(inferredOntologyFile)) {
                    // We use the same format as for the input ontology.
                    manager.saveOntology(inferredAxiomsOntology, outputStream);
                }
                esito = "done "+ reasoner.toString();
                reasoner_object.dispose();
            } // End if consistencyCheck
            else {
                esito = reasoner.toString() +" -- Inconsistent input Ontology, Please check the OWL File";
            }
    return esito;
}     

我的输出是这样的:

Loading ...
    busy ...
    ... finished in 3484.5453
Classifying ...
    1%  73
    2%  56...

谁能给我解释一下这是什么意思?是否有一些关于进度监视器输出的文档? 第二个问题:我怎样才能得到推断的class/axioms的数量? 谢谢你的帮助, 丽塔

class 的 Javadoc 可在线获取并作为 class 源代码的一部分 http://owlcs.github.io/owlapi/apidocs_5/org/semanticweb/owlapi/reasoner/TimedConsoleProgressMonitor.html

百分比增量取决于推理器的实现(并且那里可能存在不可靠性,因为推理器仅对已完成的工作量与仍需完成的工作量进行有根据的猜测。数字是自上一个百分比增量以来经过的毫秒数。

推断的公理并不是全部计算出来的,它们在需要时被惰性求值,所以它们不容易被计算出来。如果您希望具体化推论,请寻找 InferredAxiomGenerator http://owlcs.github.io/owlapi/apidocs_5/index.html?org/semanticweb/owlapi/reasoner/package-summary.html 以获得可用的可能性。