CVXR:solve() 问题 - as.vector(data) 中的错误:没有将此 s4 class 强制转换为向量的方法

CVXR: Problem with solve() - Error in as.vector(data): no method for coercing this s4 class to a vector

我正在尝试最小化此功能:

\min_{\mu} \sum_{t=T}^T \| y_t - \mu_t \|2 + \lambda \sum{t=1}^{T-1} \|mu_{t+1}- \mu_{t}\|_2

其中:y 和 mu 是 p*T 矩阵。 在我使用 solve() 函数之前,一切都编译良好。

这是我用 y 编码的 p*obs 矩阵

library(CVXR)

mu <- Variable(p, obs)

# group lasso ----
total_var <- lapply(X = seq_len(obs-1), FUN = function(j) mu[,j+1] - mu[,j])
total_var_norm <- lapply(X = total_var, FUN = cvxr_norm, p=2)
group_lasso <- Reduce(f = sum, x = total_var_norm)

# loss function ---- 
col_diff <- lapply( X = seq_len(obs), FUN = function(j) y[,j] - mu[,j])
col_diff_norm <- lapply( X = col_diff, FUN = cvxr_norm, p=2)
loss <- Reduce(f = sum, x = col_diff_norm)

# convex optimization ----
objective_mu <- loss + lambda * group_lasso
problem_mu <- Minimize(objective_mu)
result_mu <- solve(problem_mu)

result_mu <- solve(problem_mu) 之前一切都很好地执行。我在哪里收到以下错误消息:

> result_mu <- solve(problem_mu)
Error in as.vector(data) : 
  no method for coercing this S4 class to a vector

到目前为止一切都很好。

我还尝试了以下公式:

# group lasso ----
group_lasso <- norm(mu[,2] - mu[,1], type = "2")
for (s in 2:obs-1){
  group_lasso <- group_lasso + norm(mu[,s] - mu[,s+1], type = "2")
}

# loss function ---- 
loss <- norm(y[,1] - mu[,1], type = "2")
for (s in 2:obs){
  loss <- group_lasso_2 + norm(y[,s] - mu[,s], type = "2")
}

具有相同的objective和问题功能。在这里,我再次在同一点收到完全相同的错误消息。

我看不出代码哪里错了...有任何指示吗?
谢谢

Problem 在您的代码中缺失:

problem_mu <- Problem(Minimize(objective_mu))