使用 skopt 优化超参数 hidden_layer_size MLPClassifier

Optimize hyperparameters hidden_layer_size MLPClassifier with skopt

如何使用来自 sklearn 的 MLPClassifierskopt 优化神经网络中的层数和隐藏层大小?

通常我会指定我的 space 类似:

Space([Integer(name = 'alpha_2', low = 1, high = 2),
       Real(10**-5, 10**0, "log-uniform", name='alpha_2')])

(假设超参数 alpha_1alpha_2)。

通过 sklearn 中的神经网络实现,我需要调整 hidden_layer_sizes 这是一个元组:

hidden_layer_sizes : tuple, length = n_layers - 2, default=(100,)
    The ith element represents the number of neurons in the ith
    hidden layer.

我如何在 Space 中表示它?

如果您使用 gp_minimize,您可以将隐藏层数和每层神经元数作为参数包含在 Space 中。在 objective 函数的定义中,您可以手动创建超参数 hidden_layer_sizes

这是来自 scikit-optimize homepage 的示例,现在使用 MLPRegressor

import numpy as np
from sklearn.datasets import load_boston
from sklearn.neural_network import MLPRegressor
from sklearn.model_selection import cross_val_score
from skopt.space import Real, Integer, Categorical 
from skopt.utils import use_named_args
from skopt import gp_minimize

boston = load_boston()
X, y = boston.data, boston.target
n_features = X.shape[1]

reg = MLPRegressor(random_state=0)

space=[
    Categorical(['tanh','relu'],name='activation'),
    Integer(1,4,name='n_hidden_layer'),
    Integer(200,2000,name='n_neurons_per_layer')]

@use_named_args(space)

def objective(**params):
    n_neurons=params['n_neurons_per_layer']
    n_layers=params['n_hidden_layer']

    # create the hidden layers as a tuple with length n_layers and n_neurons per layer
    params['hidden_layer_sizes']=(n_neurons,)*n_layers

    # the parameters are deleted to avoid an error from the MLPRegressor
    params.pop('n_neurons_per_layer')
    params.pop('n_hidden_layer')

    reg.set_params(**params)

    return -np.mean(cross_val_score(reg, X, y, cv=5, n_jobs=-1,
                                    scoring="neg_mean_absolute_error"))

res_gp = gp_minimize(objective, space, n_calls=50, random_state=0)