Keras 模型通过使用 resize 输出具有特定大小的模型

Keras model output a model with a specific size by using resize

在 GAN 的生成器模型中,我正在尝试生成特定大小的图像。我的目标尺寸是 28x280x3。实际上,到目前为止,我正在创建 28x28x3 的生成器输出。因此,我正在尝试使用 UpSampling2D 来增加模型的大小。在三个 UpSampling2D 层之后,我能够使模型输出大小为 28x224x3。不过,我的目标是28x280x3。我怎样才能缩小分歧维度?我注意到有一种方法是针对调整图层大小的。它如何适用于我的情况?我的代码如下所示:

def build_generator_face(latent_dim, channels, face_sequence):

  model = Sequential()
  model.add(Dense(128 * 7 * 7, activation="relu", input_shape=(None, latent_dim))) 
  model.add(Reshape((7, 7, 128)))
  model.add(UpSampling2D())
  model.add(Conv2D(128, kernel_size=4, padding="same"))
  model.add(BatchNormalization(momentum=0.8))
  model.add(Activation("relu"))
  model.add(UpSampling2D())
  model.add(Conv2D(64, kernel_size=4, padding="same"))
  model.add(BatchNormalization(momentum=0.8))
  model.add(Activation("relu"))

  if face_sequence == False:
    #model.add(UpSampling2D(size=(2, 2)))
    model.add(Conv2D(64, kernel_size=4, padding="same"))
    model.add(BatchNormalization(momentum=0.8))
    model.add(Activation("relu"))

    #model.add(UpSampling2D(size=(2, 2)))
    model.add(Conv2D(64, kernel_size=4, padding="same"))
    model.add(BatchNormalization(momentum=0.8))
    model.add(Activation("relu"))

  else:
    model.add(UpSampling2D(size=(1, 2)))
    model.add(Conv2D(64, kernel_size=4, padding="same"))
    model.add(BatchNormalization(momentum=0.8))
    model.add(Activation("relu"))

    model.add(UpSampling2D(size=(1, 2)))
    model.add(Conv2D(64, kernel_size=4, padding="same"))
    model.add(BatchNormalization(momentum=0.8))
    model.add(Activation("relu"))

    model.add(UpSampling2D(size=(1, 2)))
    model.add(Conv2D(64, kernel_size=4, padding="same"))
    model.add(BatchNormalization(momentum=0.8))
    model.add(Activation("relu"))

    pdb.set_trace()
    model.add(Reshape((-1,3), input_shape=(28,224,3)))
    model.add(Lambda(lambda x: x[:7840])) # throw away some, so that #data = 224^2
    model.add(Reshape(28,280,3)) # this line gives me an error but am not sure if it is necessary or not the code is found in here: 

  model.add(Conv2D(channels, kernel_size=4, padding="same"))
  model.add(Activation("tanh"))

  model.summary()
  noise = Input(shape=(latent_dim,))
  img = model(noise)

  mdl = Model(noise, output = img)

  return mdl

如果 face_sequence 是 False,则模型正在生成 28x28x3 的输出。我希望当布尔变量为 True 时生成大小为 28x280x3 的输出。如何做到这一点?

您仅使用 7840 的第一个通道,然后尝试重塑为所需的形状。为此,您需要 23520 个元素 (28*280*3),但您只有 18816 个 (28*224*3)。

此代码在此过程中较早调整大小,并使用一个 UpSampling->Conv2D 产生所需的形状。

def build_generator_face(latent_dim, channels, face_sequence):

  model = Sequential()

  model.add(Dense(128 * 7 * 7, activation="relu", input_shape=(None, latent_dim))) 
  model.add(Reshape((7, 7, 128)))
  model.add(UpSampling2D())
  model.add(Conv2D(128, kernel_size=4, padding="same"))
  model.add(BatchNormalization(momentum=0.8))
  model.add(Activation("relu"))

  model.add(UpSampling2D())
  model.add(Conv2D(64, kernel_size=4, padding="same"))
  model.add(BatchNormalization(momentum=0.8))
  model.add(Activation("relu"))

  if face_sequence == False:
    model.add(Conv2D(64, kernel_size=4, padding="same"))
    model.add(BatchNormalization(momentum=0.8))
    model.add(Activation("relu"))

    model.add(Conv2D(64, kernel_size=4, padding="same"))
    model.add(BatchNormalization(momentum=0.8))
    model.add(Activation("relu"))

  else:
    model.add(UpSampling2D(size=(1, 2)))
    model.add(Conv2D(64, kernel_size=4, padding="same"))
    model.add(BatchNormalization(momentum=0.8))
    model.add(Activation("relu"))

    # go from 56 to 35 and continue upsampling

    model.add(Lambda(lambda x: x[:,:,:35,:]))



    model.add(UpSampling2D(size=(1, 2)))
    model.add(Conv2D(64, kernel_size=4, padding="same"))
    model.add(BatchNormalization(momentum=0.8))
    model.add(Activation("relu"))

    model.add(UpSampling2D(size=(1, 2)))
    model.add(Conv2D(64, kernel_size=4, padding="same"))
    model.add(BatchNormalization(momentum=0.8))
    model.add(Activation("relu"))

    model.add(UpSampling2D(size=(1, 2)))
    model.add(Conv2D(64, kernel_size=4, padding="same"))
    model.add(BatchNormalization(momentum=0.8))
    model.add(Activation("relu"))

    pdb.set_trace()


  model.add(Conv2D(channels, kernel_size=4, padding="same"))
  model.add(Activation("tanh"))

  model.summary()


  return model