Numpy:找到一个方程式中所需的值,使误差最小化
Numpy: Find the value needed in one equation which minimizes the error
标题不清楚,希望在这里解释得更好:
我有以下两个数组,ep
和 sp
具有相同的维度:
ep = [0.00000000e+00, 4.29973987e-05, 1.77977219e-04, 3.08940223e-04, 4.44883670e-04, 5.84806153e-04, 7.28705999e-04, 8.77580573e-04, 1.03342551e-03, 1.19623754e-03, 1.36301748e-03, 1.53675860e-03, 1.72145026e-03. 1.91608833e-03]
sp = [336.17311024, 366.02001118, 427.4927458, 471.53403676, 503.53359236, 527.23879184, 544.98822976, 558.34153011, 568.29913137, 575.9109472, 581.00400657, 584.97104685, 587.14272582, 587.92832846]
我需要根据以下公式获取数组 sw
:
sw = (np.amax(sp)/(ei**(ei+c))) * ((ep+ei)**(ei+c))
其中 c
是 ep
数组的最大值,而 ei
必须是最小化以下其他等式的总和的值(在对每个值进行迭代之后sp 和 sw):
f = (sp - sw)**2
有什么想法吗?
谢谢!
这样的事情怎么样?您已经描述了您的错误函数,因此可以使用 scipy.optimize.minimize
将其最小化:
from scipy.optimize import minimize
import numpy as np
from matplotlib import pyplot as plt
ep = np.array([0.0000000e+00, 4.29973987e-05, 1.77977219e-04, 3.08940223e-04, 4.44883670e-04, 5.84806153e-04, 7.28705999e-04, 8.77580573e-04, 1.03342551e-03, 1.19623754e-03, 1.36301748e-03, 1.53675860e-03, 1.72145026e-03, 1.91608833e-03])
sp = np.array([336.17311024, 366.02001118, 427.4927458, 471.53403676, 503.53359236, 527.23879184, 544.98822976, 558.34153011, 568.29913137, 575.9109472, 581.00400657, 584.97104685, 587.14272582, 587.92832846])
def err(ei, c):
sw = (sp/ei**(ei+c))*((ep+ei)**(ei+c))
return np.sum((sp-sw)**2)
# do minimization
c = max(ep)
guess = [1.2]
res = minimize(err, guess, args=(c,), method='Nelder-Mead')
# get miniization result
ei, = res.x
# plot results
fig, ax = plt.subplots(ncols=2)
ax[0].plot(sp)
ax[0].plot((sp/ei**(ei+c))*((ep+ei)**(ei+c)))
ax[0].set_title('Function evaluation')
ax[1].plot((sp/ei**(ei+c))*((ep+ei)**(ei+c)) - sp, label='Minimized')
ei, = guess
ax[1].plot((sp/ei**(ei+c))*((ep+ei)**(ei+c)) - sp, label='Initial Guess')
ax[1].set_title('Difference')
ax[1].legend()